nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 02, v.23;No.89 1-11
生物基水凝胶纤维的研究现状
基金项目(Foundation):
邮箱(Email): zhjpan@suda.edu.cn
DOI: 10.12194/j.ntu.20240318001
摘要:

水凝胶纤维兼具纤维的一维宏观结构和水凝胶的三维微观结构,已成为新型纤维材料领域的国内外研究热点,尤其是生物相容性好、可自然降解的生物基水凝胶纤维备受关注。为了全面系统地了解生物基水凝胶纤维的研究现状与发展趋势,文章综述了蛋白质基、纤维素基、藻酸盐基等多类生物基水凝胶纤维的国内外研究成果,总结了生物基水凝胶纤维的制备方法、主要性能特征及复合优势。其中,以丝素蛋白、胶原蛋白为代表的蛋白质基水凝胶纤维具有良好的可塑性;纤维素材料多以物理交联形式构筑水凝胶纤维并常作为增强材料;复合型藻酸盐基水凝胶纤维制备形式多样且适用范围广。此外,阐述了生物基水凝胶纤维在伤口敷料、药物输送、组织工程等生物医学领域及在应变、压力、温度和湿度传感等领域的应用,并提出了研制基于自然界生物质材料的水凝胶纤维所面临的机遇和挑战,为进一步制备高性能、多功能且绿色环保的生物基水凝胶纤维提供了参考。

Abstract:

Hydrogel fibers, which combine the one-dimensional macroscopic structure of fibers with the three-dimensional microscopic structure of hydrogels, have become a prominent research focus in the field of new fiber materials both domestically and internationally. Bio-based hydrogel fibers, in particular, have garnered significant attention due to their excellent biocompatibility and natural degradability. To gain a comprehensive and systematic understanding of the research status and development trends of bio-based hydrogel fibers, this study reviews domestic and international research achievements on various types of bio-based hydrogel fibers, including those based on proteins, cellulose, and alginates. The preparation methods, key properties, and composite advantages of these fibers are detailed. Protein-based hydrogel fibers, represented by silk fibroin and collagen, exhibit remarkable plasticity. Cellulose-based fibers are often constructed through physical cross-linking and are commonly used as reinforcing materials. Composite alginatebased hydrogel fibers exhibit diverse preparation methods and wide applicability. Furthermore, the applications of biobased hydrogel fibers in biomedical fields, such as wound dressings, drug delivery systems, and tissue engineering, are discussed. Their uses in flexible sensing areas, including strain, pressure, temperature, and humidity sensing, are also covered. Finally, the opportunities and challenges in developing hydrogel fibers based on natural biomass materials are presented, providing a valuable reference for further advancements in creating high-performance, multifunctional, and environmentally friendly bio-based hydrogel fibers.

参考文献

[1] WU S J, GONG C H, WANG Z C, et al. Continuous spinning of high-tough hydrogel fibers for flexible electronics by using regional heterogeneous polymerization[J]. Advanced Science, 2023, 10(36):e2305226.

[2] WU H, WANG L, LOU H Y, et al. One-step coaxial spinning of core-sheath hydrogel fibers for stretchable ionic strain sensors[J]. Chemical Engineering Journal, 2023, 458:141393.

[3] JU M, WU B H, SUN S T, et al. Redox-active iron-citrate complex regulated robust coating-free hydrogel microfiber net with high environmental tolerance and sensitivity[J]. Advanced Functional Materials, 2020, 30(14):1910387.

[4] WANG X D, WANG X Y, PI M H, et al. High-strength,highly conductive and woven organic hydrogel fibers for flexible electronics[J]. Chemical Engineering Journal, 2022,428:131172.

[5] WEI Z, YANG J H, ZHOU J X, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chemical Society Reviews, 2014, 43(23):8114-8131.

[6] SULTAN M T, HONG H, LEE O J, et al. Silk fibroinbased biomaterials for hemostatic applications[J]. Biomolecules, 2022, 12(5):660.

[7]张飞飞.丝素蛋白水凝胶的可控制备及其力学性能的研究[D].苏州:苏州大学,2018.ZHANG F F. Study on the controllable preparation and mechanical properties of silk fibroin hydrogel[D]. Suzhou:Soochow University, 2018.(in Chinese)

[8] WANG B X, LI J, CHENG D H, et al. Fabrication of Antheraea pernyi silk fibroin-based thermoresponsive hydrogel nanofibers for colon cancer cell culture[J]. Polymers, 2021, 14(1):108.

[9] XIN N N, LIU X Y, CHEN S P, et al. Neuroinduction and neuroprotection co-enhanced spinal cord injury repair based on IL-4@ZIF-8-loaded hyaluronan-collagen hydrogels with nano-aligned and viscoelastic cues[J]. Journal of Materials Chemistry B, 2022, 10(33):6315-6327.

[10] GILL E L, WANG W Y, LIU R S, et al. Additive batch electrospinning patterning of tethered gelatin hydrogel fibres with swelling-induced fibre curling[J]. Additive Manufacturing, 2020, 36:101456.

[11] HU X, LU L L, XU C, et al. Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking[J]. International Journal of Biological Macromolecules, 2015, 72:403-409.

[12] WANG Q Q, LIU Y, ZHANG C J, et al. Alginate/gelatin blended hydrogel fibers cross-linked by Ca2+and oxidized starch:preparation and properties[J]. Materials Science&Engineering C, Materials for Biological Applications, 2019,99:1469-1476.

[13] HU M, KURISAWA M, DENG R S, et al. Cell immobilization in gelatin-hydroxyphenylpropionic acid hydrogel fibers[J]. Biomaterials, 2009, 30(21):3523-3531.

[14] GUIMAR?ES C F, GASPERINI L, MARQUES A P, et al. The stiffness of living tissues and its implications for tissue engineering[J]. Nature Reviews Materials, 2020, 5:351-370.

[15] FAN L H, DU Y M, HUANG R H, et al. Preparation and characterization of alginate/gelatin blend fibers[J]. Journal of Applied Polymer Science, 2005, 96(5):1625-1629.

[16] KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose:fascinating biopolymer and sustainable raw material[J].Angewandte Chemie(International Ed in English), 2005,44(22):3358-3393.

[17] NGUYEN K D. Cellulose hydrogel fibre from nipa palm(nypa fruticans)shell used for adsorption of methylene blue from wastewater[J]. Cellulose Chemistry and Technology,2022, 56(7/8):881-890.

[18]程峥.细菌纤维素的合成及其高值化应用研究[D].广州:华南理工大学,2019.CHENG Z. Synthesis of bacterial cellulose and its highvalued application[D]. Guangzhou:South China University of Technology, 2019.(in Chinese)

[19] DE OLIVEIRA BARUD H G, DA SILVA R R, DA SILVA BARUD H, et al. A multipurpose natural and renewable polymer in medical applications:bacterial cellulose[J].Carbohydrate Polymers, 2016, 153:406-420.

[20] ZHANG M H, CHEN S Y, SHENG N, et al. Spinning continuous high-strength bacterial cellulose hydrogel fibers for multifunctional bioelectronic interfaces[J]. Journal of Materials Chemistry A, 2021, 9(21):12574-12583.

[21] GUAN Q F, HAN Z M, ZHU Y B, et al. Bio-inspired lotus-fiber-like spiral hydrogel bacterial cellulose fibers[J].Nano Letters, 2021, 21(2):952-958.

[22] AZAM F, AHMAD F, AHMAD S, et al. Synthesis and characterization of natural fibers reinforced alginate hydrogel fibers loaded with diclofenac sodium for wound dressings[J]. International Journal of Biological Macromolecules,2023, 241:124623.

[23] WANG Y H, ZHENG X N, ZHONG W T, et al. Multicomponent chiral hydrogel fibers with block configurations based on the chiral liquid crystals of cellulose nanocrystals and M13 bacteriophages[J]. Polymer Chemistry, 2022, 13(36):5200-5211.

[24] PEI M J, ZHU D, YANG J F, et al. Multi-crosslinked flexible nanocomposite hydrogel fibers with excellent strength and knittability[J]. European Polymer Journal,2023, 182(3):111737.

[25] WANG Z, WANG M, MA M M, et al. Water-resistant and stretchable conductive ionic hydrogel fibers reinforced by carboxymethyl cellulose[J]. Chinese Journal of Chemical Physics, 2022, 35(5):835-841.

[26]符庆金,王燕云,梁帅博,等.纳米纤维素在功能纳米材料中的应用进展[J].高分子材料科学与工程,2020,36(3):175-182.FU Q J, WANG Y Y, LIANG S B, et al. Application progress of nanocellulose in functional nanomaterial[J].Polymer Materials Science and Engineering, 2020, 36(3):175-182.(in Chinese)

[27]孙艳玲,张鹏超,王妮.海藻酸钙水凝胶纤维的制备及应用[J].纺织科学研究,2014, 25(4):108-111.SUN Y L, ZHANG P C, WANG N. Preparation and application of calcium alginate hydrogel fiber[J]. Textile Science Research, 2014, 25(4):108-111.(in Chinese)

[28] SHIN S J, PARK J Y, LEE J Y, et al."On the fly"continuous generation of alginate fibers using a microfluidic device[J]. Langmuir, 2007, 23(17):9104-9108.

[29] WAN Y K, LIU H R, YAN K, et al. An ionic/thermalresponsive agar/alginate wet-spun microfiber-shaped hydrogel combined with grooved/wrinkled surface patterns and multi-functions[J]. Carbohydrate Polymers, 2023, 304:120501.

[30] TONG R P, MA Z H, GU P, et al. Stretchable and sensitive sodium alginate ionic hydrogel fibers for flexible strain sensors[J]. International Journal of Biological Macromolecules, 2023, 246:125683.

[31] SUN J Y, ZHAO X H, ILLEPERUMA W R K, et al.Highly stretchable and tough hydrogels[J]. Nature, 2012,489(7414):133-136.

[32] GUO J J, LIU X Y, JIANG N, et al. Highly stretchable,strain sensing hydrogel optical fibers[J]. Advanced Materials, 2016, 28(46):10244-10249.

[33] KIM S H, JEONG J H, SHIM H, et al. Water-responsive tough 1D hydrogel with programmable deformations for actuators and chemical sensors[J]. Smart Material Structures,2021, 30(7):075014.

[34] DING H J, WU Z X, WANG H, et al. An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces[J]. Materials Horizons, 2022, 9(7):1935-1946.

[35] SONG J C, CHEN S, SUN L J, et al. Mechanically and electronically robust transparent organohydrogel fibers[J].Advanced Materials, 2020, 32(8):e1906994.

[36] CHEN G Y, WANG G, TAN X R, et al. Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications[J]. National Science Review, 2020, 8(9):nwaa209.

[37] WU Y, ZHOU S H, YI J, et al. Facile fabrication of flexible alginate/polyaniline/graphene hydrogel fibers for strain sensor[J]. Journal of Engineered Fibers and Fabrics, 2022,17:155892502211146.

[38] JIAO J, WANG F, HUANG J J, et al. Microfluidic hollow fiber with improved stiffness repairs peripheral nerve injury through non-invasive electromagnetic induction and controlled release of NGF[J]. Chemical Engineering Journal,2021, 426:131826.

[39] KIM D, AHN S K, YOON J. Highly stretchable strain sensors comprising double network hydrogels fabricated by microfluidic devices[J]. Advanced Materials Technologies,2019, 4(7):1800739.

[40] PENG L, LIU Y, HUANG J N, et al. Microfluidic fabrication of highly stretchable and fast electro-responsive graphene oxide/polyacrylamide/al ginate hydrogel fibers[J].European Polymer Journal, 2018, 103:335-341.

[41] SHAO L, GAO Q, ZHAO H M, et al. Fiber-based mini tissue with morphology-controllable GelMA microfibers[J].Small, 2018, 14(44):e1802187.

[42] JIA W T, GUNGOR-OZKERIM P S, ZHANG Y S, et al.Direct 3D bioprinting of perfusable vascular constructs using a blend bioink[J]. Biomaterials, 2016, 106:58-68.

[43] ZHANG Y S, ARNERI A, BERSINI S, et al. Bioprinting3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip[J]. Biomaterials, 2016,110:45-59.

[44] WANG Y L, ZHOU Y N, LI X Y, et al. Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device[J]. International Journal of Biological Macromolecules,2020, 156:252-261.

[45] ISMAIL Y A, MART魱NEZ J G, AL HARRASI A S, et al.Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle[J]. Sensors and Actuators B:Chemical, 2011, 160(1):1180-1190.

[46] LIU X J, ZHANG Y M, LI X S. Tough biopolymer IPN hydrogel fibers by bienzymatic crosslinking approach[J].Chinese Journal of Polymer Science, 2015, 33(12):1741-1749.

[47] UTAGAWA Y, INO K, TAKINOUE M, et al. Fabrication and cell culture applications of core-shell hydrogel fibers composed of chitosan/DNA interfacial polyelectrolyte complexation and calcium alginate:straight and beaded core variations[J]. Advanced Healthcare Materials, 2023, 12(31):e2302011.

[48] UMAR M, ULLAH A, NAWAZ H, et al. Wet-spun bicomponent alginate based hydrogel fibers:development and in-vitro evaluation as a potential moist wound care dressing[J]. International Journal of Biological Macromolecules,2021, 168:601-610.

[49] HUSSAIN T, MASOOD R, UMAR M, et al. Development and characterization of alginate-chitosan-hyaluronic acid(ACH)composite fibers for medical applications[J]. Fibers and Polymers, 2016, 17(11):1749-1756.

[50] ZHAO X, SUN X M, YILDIRIMER L, et al. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing[J]. Acta Biomaterialia, 2017, 49:66-77.

[51] GAO L H, LIU X X, ZHAO W S, et al. Extracellularmatrix-mimicked 3D nanofiber and hydrogel interpenetrated wound dressing with a dynamic autoimmune-derived healing regulation ability based on wound exudate[J]. Biofabrication, 2023, 15(1):015021.

[52] CHEN C T, CHEN X, ZHANG H, et al. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture[J]. Acta Biomaterialia, 2017, 55:434-442.

[53] WEI X Y, LIU C Y, WANG Z Y, et al. 3D printed coreshell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer[J]. International Journal of Pharmaceutics, 2020, 580:119219.

[54] LIM D, LEE E, KIM H, et al. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices[J]. Soft Matter, 2015,11(8):1606-1613.

[55] WANG N, WEI Y X, HU Y R, et al. Microfluidic preparation of pH-responsive microsphere fibers and their controlled drug release properties[J]. Molecules, 2023, 29(1):193.

[56] ONOE H, OKITSU T, ITOU A, et al. Metre-long cellladen microfibres exhibit tissue morphologies and functions[J]. Nature Materials, 2013, 12(6):584-590.

[57] CHEN Z, WANG L, CHEN C C, et al. NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair[J]. NPG Asia Materials,2022, 14:20.

[58] LUO Y X, CHEN B R, ZHANG X N, et al. 3D printed concentrated alginate/GelMA hollow-fibers-packed scaffolds with nano apatite coatings for bone tissue engineering[J]. International Journal of Biological Macromolecules,2022, 202:366-374.

[59] TAMAYOL A, AKBARI M, ZILBERMAN Y, et al. Flexible pH-sensing hydrogel fibers for epidermal applications[J]. Advanced Healthcare Materials, 2016, 5(6):711-719.

[60] GAO R, JIANG Y, DING W H. Agarose gel filled temperature-insensitive photonic crystal fibers humidity sensor based on the tunable coupling ratio[J]. Sensors and Actuators B:Chemical, 2014, 195:313-319.

基本信息:

DOI:10.12194/j.ntu.20240318001

中图分类号:TQ427.26;TS106

引用信息:

[1]张昱旻,刘雨茜,吴玉婷等.生物基水凝胶纤维的研究现状[J].南通大学学报(自然科学版),2024,23(02):1-11.DOI:10.12194/j.ntu.20240318001.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文