537 | 0 | 140 |
下载次数 | 被引频次 | 阅读次数 |
为了提高气凝胶纤维的机械强力和隔热性能,采用微晶纤维素(microcrystalline cellulose,MCC)和热塑性聚氨酯(thermoplastic polyurethane,TPU)同轴湿法纺丝,通过溶剂交换和冷冻干燥,制备具有MCC多孔气凝胶核层和TPU壳层的气凝胶纤维,并对MCC-TPU气凝胶纤维的形貌及化学晶体结构、热稳定性、力学性能和保温隔热性能进行分析测试。结果表明:MCC通过溶解和再生制备成MCC气凝胶纤维后,晶型结构由纤维素Ⅰ型转变为纤维素Ⅱ型;MCC-TPU气凝胶纤维内部具有多级孔隙结构,存在介孔和微孔孔隙(密度0.169 g/cm3比表面积6.460 m2g,平均孔径17.005 nm);当MCC质量分数为1.5%、TPU质量分数为25%时,所制备的MCC-TPU气凝胶纤维拉伸性能最好,断裂强力和断裂伸长率分别达到2.32 MPa、567.47%,比MCC质量分数为3.0%、TPU质量分数为0%时所制备的气凝胶纤维分别增加了246%和11 027%,可以编织成纺织品,具有良好的机械性能和柔韧性;TPU的引入使气凝胶纤维整体的热稳定性得到了提高,MCC-TPU气凝胶纤维与热台温差最高可达22.48℃,整体红外发射率低于0.5,热辐射降低,在高性能保温纺织品领域有着很好的应用前景。
Abstract:To enhance the mechanical strength and thermal insulation properties of aerogel fibers, microcrystalline cellulose(MCC) and thermoplastic polyurethane(TPU) are employed in coaxial wet spinning. Through solvent exchange and freeze-drying, aerogel fibers with a porous MCC aerogel core layer enveloped by a TPU shell layer are prepared. The morphology, chemical crystalline structure, thermal stability, mechanical properties, and thermal insulation performance of the MCC-TPU aerogel fibers(MTAFs) are systematically analyzed and evaluated. The results demonstrate that upon dissolution and regeneration into MCC aerogel fibers, the crystalline structure of MCC transitio ns from cellulose Ⅰ to cellulose Ⅱ. The MTAFs exhibit a hierarchical porous structure comprising both mesopores and micropores, with a density of 0.169 g/cm3 a specific surface area of 6.460 m2g, and an average pore diameter of 17.005 nm. When the mass fraction of MCC is 1.5% and that of TPU is 25%, the MTAFs exhibit optimal tensile properties, with a tensile strength of 2.32 MPa and an elongation at break of 567.47%. These values represent an increase of 246% and 11 027%, respectively, compared to MTAFs with an MCC mass fraction of 3.0% and a TPU mass fraction of 0%. These fibers can be woven into textiles, showcasing excellent mechanical properties and flexibility. The incorporation of TPU enhances the overall thermal stability of the aerogel fibers. The MTAFs achieve a maximum temperature differential of up to 22.48 ℃ with the heating stage, exhibit an overall infrared emissivity below0.5, and effectively reduce thermal radiation. These attributes make them highly promising for applications in high-performance thermal insulation textiles.
[1] CHEN Y M, ZHANG L, YANG Y, et al. Recent progress on nanocellulose aerogels:preparation, modification, composite fabrication, applications[J]. Advanced Materials,2021, 33(11):e2005569.
[2] CAO M, LIU B W, ZHANG L, et al. Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications[J]. Composites Part B:Engineering, 2021, 225:109309.
[3] ZHONG S J, YUAN S X, ZHANG X, et al. Hierarchical cellulose aerogel reinforced with in situ-assembled cellulose nanofibers for building cooling[J]. ACS Applied Materials&Interfaces, 2023, 15(33):39807-39817.
[4] ROSTAMITABAR M, SUBRAHMANYAM R, GURIKOV P, et al. Cellulose aerogel micro fibers for drug delivery applications[J]. Materials Science and Engineering:C, 2021,127:112196.
[5] SONG J W, CHEN C J, YANG Z, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers[J]. ACS Nano, 2018, 12(1):140-147.
[6] XU X Z, ZHOU J, NAGARAJU D H, et al. Flexible,highly graphitized carbon aerogels based on bacterial cellulose/lignin:catalyst-free synthesis and its application in energy storage devices[J]. Advanced Functional Materials,2015, 25(21):3193-3202.
[7] SHENG Z Z, LIU Z W, HOU Y L, et al. The rising aerogel fibers:status, challenges, and opportunities[J]. Advanced Science, 2023, 10(9):e2205762.
[8] WANG J M. Preparation and properties of SiO2aerogel and fabric composite based on polyurethane[J]. Integrated Ferroelectrics, 2018, 189(1):36-43.
[9] LI Z, GONG L L, CHENG X D, et al. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior[J]. Materials&Design, 2016, 99:349-355.
[10] HOU Y L, SHENG Z Z, FU C, et al. Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption[J]. Nature Communications, 2022, 13(1):1227.
[11] DU Y, ZHANG X H, WANG J, et al. Reaction-spun transparent silica aerogel fibers[J]. ACS Nano, 2020, 14(9):11919-11928.
[12] KARADAGLI I, SCHULZ B, SCHES TAKOW M, et al.Production of porous cellulose aerogel fibers by an extrusion process[J]. The Journal of Supercritical Fluids, 2015,106:105-114.
[13]朱玥,宋雪雁,蔡俐.生物质纤维素制备Pickering泡沫[J].南通大学学报(自然科学版),2020, 19(3):55-60.ZHU Y, SONG X Y, CAI L. Pickering foams prepared by biomass cellulose particles[J]. Journal of Nantong University(Natural Science Edition), 2020, 19(3):55-60.(in Chinese)
[14] WEI X, HUANG T, NIE J, et al. Bio-inspired functionalization of microcrystalline cellulose aerogel with high adsorption performance toward dyes[J]. Carbohydrate Polymers, 2018, 198:546-555.
[15] ZHAO Y F, ZHONG K, LIU W, et al. Preparation and oil adsorption properties of hydrophobic microcrystalline cellulose aerogel[J]. Cellulose, 2020, 27(13):7663-7675.
[16]郝瑞莉,丁志荣,张琰卿,等.聚四氟乙烯层压复合织物的制备与工艺优化[J].南通大学学报(自然科学版),2015, 14(1):60-64.HAO R L, DING Z R, ZHANG Y Q, et al. PTFE laminated composite fabric preparation and process optimization[J]. Journal of Nantong University(Natural Science Edition), 2015, 14(1):60-64.(in Chinese)
[17] CHOI M, KIM Y, PARK S, et al. Functionalized polyurethane-coated fabric with high breathability, durability, reusability, and protection ability[J]. Advanced Functional Materials, 2021, 31(24):2101511.
[18]史铁钧,吴德峰.高分子流变学基础[M].北京:化学工业出版社,2009:27-30.
[19] YE T, LIU J Y, SUN J J, et al. Healable, luminescent,Notch-insensitive waterborne polyurethane via noncovalent crosslinking with hydrogen bonds and ionic interactions[J].Chemical Engineering Journal, 2023, 475:146393.
[20] LI X Y, XU R, YANG J X, et al. Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation[J]. Industrial Crops and Products, 2019, 130:184-197.
[21] LI X, LI H C, YOU T T, et al. Enhanced dissolution of cotton cellulose in 1-allyl-3-methylimidazolium chloride by the addition of metal chlorides[J]. ACS Sustainable Chemistry&Engineering, 2019, 7(23):19176-19184.
[22] LU X K, SHEN X Y. Solubility of bacteria cellulose in zinc chloride aqueous solutions[J]. Carbohydrate Polymers,2011, 86(1):239-244.
[23] SUN L Y, HAN J, WU J C, et al. Cellulose pretreatment with inorganic salt hydrate:dissolution, regeneration, structure and morphology[J]. Industrial Crops and Products,2022, 180:114722.
[24] FRENCH A D, SANTIAGO CINTRóN M. Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index[J]. Cellulose, 2013, 20(1):583-588.
[25] XIONG J H, YU S Q, ZHU H X, et al. Dissolution and structure change of bagasse cellulose in zinc chloride solution[J]. BioResources, 2016, 11(2):3813-3824.
[26] PANG J H, WU M, ZHANG Q H, et al. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid[J]. Carbohydrate Polymers, 2015, 121:71-78.
[27] ZHOU J, HSIEH Y L. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation[J]. Nano Energy, 2020,68:104305.
[28] FEI L, YU W D, TAN J L, et al. High solar energy absorption and human body radiation reflection Janus textile for personal thermal management[J]. Advanced Fiber Materials, 2023, 5(3):955-967.
基本信息:
DOI:10.12194/j.ntu.20240412001
中图分类号:TQ427.26;TQ342
引用信息:
[1]王庭丽,宋理阳,臧雪妍等.微晶纤维素-热塑性聚氨酯核壳结构气凝胶纤维的制备及性能[J].南通大学学报(自然科学版),2024,23(02):12-20.DOI:10.12194/j.ntu.20240412001.
基金信息:
国家级大学生创新创业训练计划项目(202310295167Y)