nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 04, v.22;No.87 1-13
硫族化合物在红外光电探测领域的应用
基金项目(Foundation): 国家自然科学基金青年科学基金项目(22101045)
邮箱(Email): haijie.chen@dhu.edu.cn;
DOI:
摘要:

随着红外探测对灵敏度的要求越来越高,传统的基于热效应的红外探测器已不能满足军事、通讯、生命科学等多方面的需求,基于光电效应的新型红外探测器成为人们研究的重点,其关键在于高灵敏度红外响应相关材料的开发。其中,硫族化合物由于种类繁多、性能优异、制备简单,是一大类有望商业化的材料家族。文章从晶体结构的角度出发,详细介绍了可用于红外光电探测的相关硫族化合物,重点阐述了材料种类、合成方法以及器件性能,并展望了硫族化合物在红外光电探测领域的机遇与挑战。

Abstract:

As the demand for sensitivity in infrared detection continues to rise, traditional infrared detectors based on thermal effects no longer meet the requirements in various fields such as military, communication, and life sciences.Consequently, new types of infrared detectors based on the photoelectric effect have become a focal point of research.The key to their advancement lies in the development of materials with high infrared response sensitivity. Among these materials, chalcogenide compounds, characterized by their diversity, superior performance, and simplicity of preparation, represent a promising category for commercialization. This study begins from the perspective of crystal structure,providing a detailed introduction to chalcogenide compounds applicable in infrared optoelectronic detection. It emphasizes the variety of materials, synthesis methods, and device performance, and it concludes with a perspective on the opportunities and challenges for chalcogenide compounds in the field of infrared optoelectronic detection.

参考文献

[1]胡伟达,李庆,陈效双,等.具有变革性特征的红外光电探测器[J].物理学报,2019, 68(12):120701.HU W D, LI Q, CHEN X S, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica,2019, 68(12):120701.(in Chinese)

[2] OZAKI Y. Infrared spectroscopy:mid-infrared, near-infrared, and far-infrared/terahertz spectroscopy[J]. Analytical Sciences, 2021, 37(9):1193-1212.

[3] DING N, WU Y J, XU W, et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared[J]. Light:Science&Applications, 2022, 11:91.

[4] LIANG L L, WANG C W, CHEN J Y, et al. Incoherent broadband mid-infrared detection with lanthanide nanotransducers[J]. Nature Photonics, 2022, 16(10):712-717.

[5] HAN Y N, ZHANG A K. Cryogenic technology for infrared detection in space[J]. Scientific Reports, 2022, 12:2349.

[6] JIANG W, ZHENG T, WU B M, et al. A versatile photodetector assisted by photovoltaic and bolometric effects[J].Light:Science&Applications, 2020, 9:160.

[7] CHEN C, LI C, MIN S, et al. Ultrafast silicon nanomembrane microbolometer for long-wavelength infrared light detection[J]. Nano Letters, 2021, 21(19):8385-8392.

[8] HSU A L, HERRING P K, GABOR N M, et al. Graphenebased thermopile for thermal imaging applications[J]. Nano Letters, 2015, 15(11):7211-7216.

[9] ROGALSKI A. Infrared detectors:status and trends[J].Progress in Quantum Electronics, 2003, 27(2/3):59-210.

[10] LANGLEY S P. The bolometer[J]. Nature, 1881, 25(627):14-16.

[11] DONG F L, ZHANG Q C, CHEN D P, et al. An uncooled optically readable infrared imaging detector[J]. Sensors and Actuators A:Physical, 2007, 133(1):236-242.

[12] LEE D, KIM D, KIM D S, et al. High sensitivity bolometers based on metal nanoantenna dimers with a nanogap filled with vanadium dioxide[J]. Scientific Reports, 2021,11:15863.

[13] BAL CYTIS A, RYU M, JUODKAZIS S, et al. Microthermocouple on nano-membrane:thermometer for nanoscale measurements[J]. Scientific Reports, 2018, 8:6324.

[14] ADIYAN U, LARSEN T, ZáRATE J J, et al. Shape memory polymer resonators as highly sensitive uncooled infrared detectors[J]. Nature Communications, 2019, 10(1):4518.

[15]郭家祥,谢润章,王鹏,等.多维度红外光电探测器[J].红外与毫米波学报,2022, 41(1):40-60.GUO J X, XIE R Z, WANG P, et al. Infrared photodetectors for multidimensional optical information acquisition[J].Journal of Infrared and Millimeter Waves, 2022, 41(1):40-60.(in Chinese)

[16] CHU A, GR魪BOVAL C, PRADO Y, et al. Infrared photoconduction at the diffusion length limit in HgTe nanocrystal arrays[J]. Nature Communications, 2021, 12:1794.

[17] PATEL T, TSEN A W. Stress testing the bulk photovoltaic effect[J]. Nature Nanotechnology, 2023, 18(1):3-4.

[18] GUAN X W, YU X C, PERIYANAGOUNDER D, et al.Recent progress in short-to long-wave infrared photodetection using 2D materials and heterostructures[J]. Advanced Optical Materials, 2021, 9(4):2001708.

[19] SAFAEI A, CHANDRA S, SHABBIR M W, et al. Dirac plasmon-assisted asymmetric hot carrier generation for room-temperature infrared detection[J]. Nature Communications, 2019, 10:3498.

[20] GREIN C H, YOUNG P M, FLATT魪M E, et al. Long wavelength InAs/InGaSb infrared detectors:optimization of carrier lifetimes[J]. Journal of Applied Physics, 1995, 78(12):7143-7152.

[21] GUO Y N, LIU D, MIAO C C, et al. Recent advances in semiconductor nanowires infrared pho todetectors(invited)[J]. Infrared and Laser Engineering, 2021, 50(1):20211010.

[22] KARTHIK YADAV P V, AJITHA B, KUMAR REDDY Y A, et al. Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region:a review[J]. Chemosphere, 2021, 279:130473.

[23] CHEN X L, LU X B, DENG B C, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nature Communications, 2017, 8:1672.

[24] JI P R, YANG S M, WANG Y, et al. High-performance photodetector based on an interface engineering-assisted graphene/silicon schottky junction[J]. Microsystems&Nanoengineering, 2022, 8:9.

[25] WANG L, HAN L, GUO W L, et al. Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting[J]. Light:Science&Applications, 2022,11:53.

[26] HU W, CONG H, HUANG W, et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band[J]. Light:Science&Applications, 2019, 8:106.

[27] WANG Q, JIANG C L, YU C F, et al. General solutionbased route to V-VI semiconductors nanorods from hydrolysate[J]. Journal of Nanoparticle Research, 2007, 9(2):269-274.

[28] QIU Q X, HUANG Z M. Photodetectors of 2D materials from ultraviolet to terahertz waves[J]. Advanced Materials(Deerfield Beach, Fla), 2021, 33(15):e2008126.

[29] YIN X T, ZHANG C, GUO Y X, et al. PbS QD-based photodetectors:future-oriented near-infrared detection technology[J]. Journal of Materials Chemistry C, 2021, 9(2):417-438.

[30] ZHANG Z D, YANG J H, ZHANG K, et al. Anisotropic photoresponse of layered 2D SnS-based near infrared photodetectors[J]. Journal of Materials Chemistry C, 2017, 5(43):11288-11293.

[31] MUKHOKOSI E P, MANOHAR G V S, NAGAO T, et al.Device architecture for visible and near-infrared photodetectors based on two-dimensional SnSe2and MoS2:a review[J]. Micromachines, 2020, 11(8):750.

[32] WEN X X, LU Z H, VALDMAN L, et al. High-crystallinity epitaxial Sb2Se3thin films on mica for flexible near-infrared photodetectors[J]. ACS Applied Materials&Interfaces, 2020, 12(31):35222-35231.

[33] WANG Y, WU P S, WANG Z, et al. Air-stable lowsymmetry narrow-bandgap 2D sulfide niobium for polarization photodetection[J]. Advanced Materials, 2020, 32(45):e2005037.

[34] NIU Y Y, WANG B, CHEN J P, et al. Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe3flake material at room temperature[J]. Journal of Materials Chemistry C, 2018, 6(4):713-716.

[35] ULAGANATHAN R K, SANKAR R, LIN C Y, et al.High-performance flexible broadband photodetectors based on 2D hafnium selenosulfide nanosheets[J]. Advanced Electronic Materials, 2020, 6(1):1900794.

[36] WU D, MO Z H, HAN Y B, et al. Fabrication of 2D PdSe2/3D CdTe mixed-dimensional van der waals heterojunction for broadband infrared detection[J]. ACS Applied Materials&Interfaces, 2021, 13(35):41791-41801.

[37] KIM S T, YOO J S, LEE M W, et al. CuInSe2-based near-infrared photodetector[J]. Applied Sciences, 2021,12(1):92.

[38] XU X J, KWEON K E, KEULEYAN S, et al. Rapid in situ ligand-exchange process used to prepare 3D PbSe nanocrystal superlattice infrared photodetectors[J]. Small,2021, 17(25):e2101166.

[39] NAKAZAWA T, KIM D, KIM J, et al. Development of RuS2for near-infrared photodetector by atomic layer deposition and post-sulfurization[J]. Rare Metals, 2022, 41(9):3086-3099.

[40] YIN J B, TAN Z J, HONG H, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals[J]. Nature Communications, 2018, 9:3311.

[41] MA W L, WU T, YAO N J, et al. Bandgap-independent photoconductive detection in two-dimensional Sb2Te3[J].Communications Materials, 2022, 3:68.

[42] GONG X B, HOU C Y, ZHANG Q H, et al. Solvatochromic structural color fabrics with favorable wearability properties[J]. Journal of Materials Chemistry C, 2019, 7(16):4855-4862.

[43] GARTON G, WANKLYN B M. Crystal growth and magnetic susceptibility of some rare-earth compounds[J]. Journal of Materials Science, 1968, 3(4):395-401.

[44] NIU Y Y, WU D, SU Y Q, et al. Uncooled EuSbTe3photodetector highly sensitive from ultraviolet to terahertz frequencies[J]. 2D Materials, 2017, 5(1):011008.

[45] JERNIGAN G G, THOMPSON P E. Scanning tunneling microscopy of SiGe alloy surfaces grown on Si(100)[J].Surface Science, 2002, 516(1/2):207-215.

[46] WEI T Y, WANG X M, YANG Q, et al. Mid-infrared photodetection of type-II Dirac semimetal 1T-PtTe2grown by molecular beam epitaxy[J]. ACS Applied Materials&Interfaces, 2021, 13(19):22757-22764.

[47] TANG L P, ZHAO Z X, YUAN S P, et al. Self-catalytic VLS growth one dimensional layered GaSe nanobelts for high performance photodetectors[J]. Journal of Physics and Chemistry of Solids, 2018, 118:186-191.

[48] DASADIA A, BHAVSAR V. Growth, structure, electrical and optical properties of transition metal chalcogenide crystals synthesized by improved chemical vapor transport technique for semiconductor technologies[J]. Progress in Crystal Growth and Characterization of Materials, 2022,68(3):100578.

[49] ZHOU Y, WANG L, CHEN S Y, et al. Thin-film Sb2Se3photovoltaics with oriented one-dimensional ribbons and benign grain boundaries[J]. Nature Photonics, 2015, 9(6):409-415.

[50] CHEN S, FU Y, ISHAQ M, et al. Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb2Se3photodetectors[J].InfoMat, 2023, 5(4):e12400.

[51] CHOI D, JANG Y, LEE J, et al. Diameter-controlled and surface-modified Sb2Se3nanowires and their photodetector performance[J]. Scientific Reports, 2014, 4:6714.

[52] CHEN C, LI K H, LI F, et al. One-dimensional Sb2Se3enabling a highly flexible photodiode for light-source-free heart rate detection[J]. ACS Photonics, 2020, 7(2):352-360.

[53] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.

[54]骆文锦.基于低维材料的高增益光电探测器研究[D].上海:中国科学院大学(中国科学院上海技术物理研究所),2019.LUO W J. The study of high gain photodetector based on low dimensional materials[D]. Shanghai:Shanghai Institute of Technical Physics, Chinese Academy of Sciences,2019.(in Chinese)

[55] WU J X, YUAN H T, MENG M M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se[J]. Nature Nanotechnology,2017, 12(6):530-534.

[56] SOSSO G C, CARAVATI S, BERNASCONI M. Vibrational properties of crystalline Sb2Te3from first principles[J]. Journal of Physics:Condensed Matter, 2009, 21(9):095410.

[57] VALDMAN L, MAZáNEK V, MARVAN P, et al. Layered ZnIn2S4single crystals for ultrasensitive and wearable photodetectors[J]. Advanced Optical Materials, 2021, 9(21):2100845.

[58] BRENAN J M, ANDREWS D. High-temperature stability of laurite and ru-os-ir alloy and their role in pge fractionation in mafic magmas[J]. The Canadian Mineralogist, 2001,39(2):341-360.

[59] HORNER S D, RIEKE M J. The near-in frared camera(NIRCam)for the James Webb space telescope(JWST)[C]//Conference on Optical, Infrared, and Millimeter Space Telescopes.[S.l.]:SPIE, 2004, 5487:628-634.

[60] GARNETT J D, FARRIS M C, WONG S S, et al. 2K×2K molecular beam epitaxy HgCdTe detectors for the James Webb space telescope NIRCam instrument[C]//Conference on Optical and Infrared Detectors for Astronomy.[S.l.]:SPIE,2004, 5499:35-46.

[61] FANG H H, HU W D. Hybrid heterojunctions based on2D materials and 3D thin-films for high-performance photodetectors[J]. Science China Physics, Mechanics&Astronomy, 2017, 60(2):027031.

基本信息:

DOI:

中图分类号:TN215

引用信息:

[1]张天朔,顾皓,陈海杰.硫族化合物在红外光电探测领域的应用[J].南通大学学报(自然科学版),2023,22(04):1-13.

基金信息:

国家自然科学基金青年科学基金项目(22101045)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文