473 | 0 | 126 |
下载次数 | 被引频次 | 阅读次数 |
为了制备具有光催化活性和抗菌性能的功能性纺织品,采用等离子体技术对涤纶织物表面进行预处理,并将纳米TiO2光催化剂负载到涤纶织物表面,制备等离子体-TiO2-涤纶复合光催化材料。采用扫描电镜(SEM)、X射线能谱分析(EDS)、X射线衍射分析(XRD)、X射线光电子能谱分析(XPS),分别对光催化材料的表面形貌、结晶结构、元素化学组成进行分析;并在模拟太阳光照射下,以亚甲基蓝为有机污染物模型,探讨了等离子体处理时间对涤纶织物表面光催化性能的影响;以大肠杆菌和金黄色葡萄球菌为测试菌种,探讨了等离子体处理时间对涤纶织物表面抗菌性能的影响。结果表明:经等离子体处理后负载TiO2的涤纶织物表面呈超亲水,负载TiO2后吸水时间仅190 ms。扫描电镜结果显示:随着等离子体处理时间的延长,涤纶织物表面纳米TiO2负载量逐渐增加。光催化降解实验结果表明:经等离子体处理2 min的涤纶织物在模拟太阳光下具有更高的降解率,用其对模型污染物亚甲基蓝处理90 min后,亚甲基蓝的降解率为94.5%。抗菌测试结果表明:经等离子体-TiO2整理后的织物对金黄色葡萄球菌的抑菌率可达91.2%。
Abstract:To prepare functional textiles with photocatalytic activity and antibacterial properties, plasma technology was used to pretreat polyester fabrics, and nano-TiO2 photocatalysts were loaded onto the surface of the fabrics to create plasma-TiO2-polyester composite photocatalytic materials. Scanning electron microscopy(SEM), X-ray energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS) were employed to analyze the surface morphology, crystal structure, and elemental composition of the polyester fabrics. Under simulated sunlight irradiation, methylene blue was used as an organic pollutant model to investigate the effect of plasma treatment time on the photocatalytic performance of the polyester fabrics. The antibacterial properties were tested using Escherichia coli and Staphylococcus aureus as model organisms to evaluate the impact of plasma treatment time.The results show that the plasma-treated polyester fabric loaded with TiO2 exhibits superhydrophilicity, with a water absorption time of only 190 ms. SEM results indicate that the amount of nano-TiO2 on the polyester fabric surface increases with longer plasma treatment times. Photocatalytic degradation experiments demonstrate that polyester fabric treated with plasma for 2 minutes achieves a high degradation rate of 94.5% for methylene blue after 90 minutes under simulated sunlight. Antibacterial tests reveal that the plasma-treated polyester fabric loaded with TiO2 can achieve an antibacterial rate of 91.2% against Staphylococcus aureus.
[1] RASHID M M, SIMONC IC B, TOMS IC B. Recent advances in Ti O2-functionalized textile surfaces[J]. Surfaces and Interfaces, 2021, 22:100890.
[2]邓佳雯,郭颖,徐利云,等.低气压等离子体工艺参数对制备超疏水涤纶织物的影响[J].上海纺织科技,2019,47(10):51-56.DENG J W, GUO Y, XU L Y, et al. Preparation of super-hydrophobic polyster fabric by low pressure plasma[J].Shanghai Textile Science&Technology, 2019, 47(10):51-56.(in Chinese)
[3]邵灵达,申晓,金肖克,等.涤纶纤维表面复合改性对其亲水性的影响[J].丝绸,2020, 57(2):19-24.SHAO L D, SHEN X, JIN X K, et al. Effect of surface modification of polyester fiber on its properties[J]. Journal of Silk, 2020, 57(2):19-24.(in Chinese)
[4]朱文怡.纳米N/TiO2负载涤纶非织造材料的制备及其降解甲醛的研究[D].无锡:江南大学,2021.ZHU W Y. Study on the polyester nonwovens supported N-doped nano-TiO2compositing material and degradation of formaldehyde[D]. Wuxi:Jiangnan University, 2021.(in Chinese)
[5]梁慧,张光先,张凤秀,等.紫外线纳米二氧化钛改性高亲水涤纶织物的制备[J].纺织学报,2013, 34(3):82-86.LIANG H, ZHANG G X, ZHANG F X, et al. Preparation of highly hydrophilic polyester fabrics via UV irradiation/nano-TiO2modification[J]. Journal of Textile Research,2013, 34(3):82-86.(in Chinese)
[6] FUJISHIMA A, RAO T N. Recent advances in heterogeneous Ti O2photocatalysis[J]. Proceedings/Indian Academy of Sciences, 1997, 109(6):471-486.
[7] WANG C X, LV J C, REN Y, et al. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement[J].Applied Surface Science, 2015, 359:196-203.
[8]张红阳,任煜,徐林,等.常压等离子体辅助涤纶非织造材料表面拒水拒油整理研究[J].纺织导报,2019(4):26-29.ZHANG H Y, REN Y, XU L, et al. Effect of atmospheric pressure plasma-fluoroalkyl silanes treatment on water-repellent and oil-repellent properties of polyester nonwovens[J]. China Textile Leader, 2019(4):26-29.(in Chinese)
[9] WIACEK A E, JURAK M, GOZDECKA A, et al. Interfacial properties of PET and PET/starch polymers developed by air plasma processing[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 532:323-331.
[10]陈秋圆,刘开强,唐人成.涤纶织物聚酯聚醚共聚物浸渍法亲水整理[J].印染,2013, 39(1):1-4.CHEN Q Y, LIU K Q, TANG R C. Hydrophilic finish of polyester fiber with polyester-polyether block copolymer by an immersion method[J]. Dyeing&Finishing, 2013, 39(1):1-4.(in Chinese)
[11] OWAD T T A, SIDDIG E A A, SALIH R E M, et al.Durable and recoverable hydrophilicity of polyethylene terephthalate fabric prepared with plasma selective etching[J]. Surfaces and Interfaces, 2022, 32:102081.
[12]武昊岩,谢光银.高强涤纶纤维等离子体改性的研究[J].纺织科技进展,2020(3):16-19.WU H Y, XIE G Y. Study on plasma modification of high strength polyester fiber[J]. Progress in Textile Science&Technology, 2020(3):16-19.(in Chinese)
[13] WANG Q Z, LI J J, BAI Y, et al. Photodegradation of textile dye Rhodamine B over a novel biopolymer-metal complex wool-Pd/CdS photocatalysts under visible light irradiation[J]. Journal of Photochemistry and Photobiology B:Biology, 2013, 126:47-54.
[14] D′AMATO C A, GIOVANNETTI R, ZANNOTTI M, et al.Band gap implications on nano-Ti O2surface modification with ascorbic acid for visible light-active polypropylene coated photocatalyst[J]. Nanomaterials, 2018, 8(8):599.
[15] WU C Y, CORRIGAN N, LIM C H, et al. Guiding the design of organic photocatalyst for PET-RAFT polymerization:halogenated xanthene dyes[J]. Macromolecules, 2019,52(1):236-248.
[16] WU S X, MA Z, QIN Y N, et al. XPS study of copper doping Ti O2photocatalyst[J]. Acta Physico-Chimica Sinica,2003, 19(10):967-969.
[17]王新,王进美,郑云龙,等.涤纶织物表面结构改性对其亲水性的影响[J].合成纤维,2020, 49(7):37-41.WANG X, WANG J M, ZHENG Y L, et al. Effect of surface structural modification on hydrophilicity of polyester fabric[J]. Synthetic Fiber in China, 2020, 49(7):37-41.(in Chinese)
[18] JIA L L, HUANG X Y, LIANG H E, et al. Enhanced hydrophilic and antibacterial efficiencies by the synergetic effect TiO2nanofiber and graphene oxide in cellulose acetate nanofibers[J]. International Journal of Biological Macromolecules, 2019, 132:1039-1043.
[19]林华香,王绪绪,付贤智. TiO2表面羟基及其性质[J].化学进展,2007, 19(5):665-670.LIN H X, WANG X X, FU X Z. Properties and distribution of the surface hydroxyl groups of TiO2[J]. Progress in Chemistry, 2007, 19(5):665-670.(in Chinese)
[20] BHARTI B, KUMAR S, KUMAR R. Superhydrophilic TiO2thin film by nanometer scale surface roughness and dangling bonds[J]. Applied Surface Science, 2016, 364:51-60.
[21] SUTTIPONPARNIT K, JIANG J K, SAHU M, et al. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties[J].Nanoscale Research Letters, 2011, 6(1):27.
[22] COSTA A L, ORTELLI S, BLOSI M, et al. TiO2based photocatalytic coatings:from nanostructure to functional properties[J]. Chemical Engineering Journal, 2013, 225:880-886.
[23] SIEVERS N V, POLLO L D, COR??O G, et al. In situ synthesis of nanosized TiO2in polypropylene solution for the production of films with antibacterial activity[J]. Materials Chemistry and Physics, 2020, 246:122824.
基本信息:
DOI:10.12194/j.ntu.20231120002
中图分类号:O643.36;O644.1;TS195.5
引用信息:
[1]赵紫瑶,栾睿,莫慧琳等.涤纶表面等离子体-纳米TiO_2整理及其光催化性能研究[J].南通大学学报(自然科学版),2024,23(02):58-66.DOI:10.12194/j.ntu.20231120002.
基金信息:
江苏省自然科学基金青年基金项目(BK20220613); 南通市科技计划项目(JC12022080)