1,017 | 3 | 120 |
下载次数 | 被引频次 | 阅读次数 |
复杂曲面光学元件应用于光学系统中可以增大系统设计自由度,同时减少系统所需元件数量,有利于实现光学系统的紧凑化、轻量化,被誉为现代光学系统的变革性元件,被广泛应用于空间光学、光刻系统、汽车照明等领域,极大推动了航天、国防及高科技民用事业的发展。然而,复杂曲面光学元件对面形精度要求较高,如何对其面形进行高精度检测从而指导加工成为限制该类元件大范围应用的瓶颈。文章对10余种常用的复杂曲面光学元件面形检测方法进行了分类梳理,按照是否采用干涉原理,将检测方法分为非干涉检测法和干涉检测法两大类,分别介绍了各种检测方法的原理和适用范围,回顾了各方法的发展历程,着重分析了几种典型方法进行面形检测的特点,并对未来复杂曲面光学元件高精度面形检测技术的发展趋势加以展望。
Abstract:The application of complex curved optical components in these systems enhances design flexibility, reduces the number of components required, and facilitates the miniaturization and lightweighting of optical systems.Celebrated as transformative elements in modern optical systems, these components find extensive applications in space optics, lithography systems, automotive lighting, and more, significantly advancing the development of aerospace, national defense, and high-tech civilian enterprises. However, the high surface shape precision required by complex curved optical components poses a challenge. The ability to conduct high-precision surface shape inspections to guide processing has become a bottleneck limiting the widespread application of such components. This paper categorizes and reviews the commonly used surface shape inspection methods for complex curved optical components.According to whether interference principle is adopted, the measurement methods are divided into two categories: non-interferometry and interferometry. It also looks back at the development of these methods, focusing on the characteristics of several typical methods for surface shape inspection, and anticipates future trends in the development of high-precision surface shape inspection technologies for complex curved optical components.
[1] MA X X, WANG J L, WANG B, et al. Research on optical metrology for complex optical surfaces with focal plane wavefront sensing[J]. Micromachines, 2023, 14(6):1142.
[2] LI J Y, ZHOU L, LONG Y, et al. Research on free-form surface optimization method based on surface shape transformation[C]//Proceedings of the Applied Optics and Photonics China 2021:Optical Sensing and Imaging Technology, July 23-25, 2021, Beijing, China. Bellingham, WA:SPIE, 2021, 12065:716-724.
[3]徐超,彭小强,戴一帆.复杂曲面铝反射镜超精密制造现状[J].光电工程,2020, 47(8):200147.XU C, P ENG X Q, DAI Y F. Current status of ultraprecision manufacturing of complex curved aluminum reflectors[J]. Opto-Electronic Engineering, 2020, 47(8):200147.(in Chinese)
[4]程德文,陈海龙,王涌天,等.复杂光学曲面数理描述和设计方法研究[J].光学学报,2023, 43(8):0822008.CHENG D W, CHEN H L, WANG Y T, et al. Mathematical description and design methods of complex optical surfaces[J]. Acta Optica Sinica, 2023, 43(8):0822008.(in Chinese)
[5] WILLS S. Freeform optics:notes from the revolution[J].Optics&Photonics News, 2017, 28(7):34.
[6] ROLLAND J P, DAVIES M A, SULESKI T J, et al.Freeform optics for imaging[J]. Optica, 2021, 8(2):161-176.
[7] CARON J, B?UMER S. Progress in freeform mirror design for space applications[C]//Proceedings of the International Conference on Space Optics(ICSO 2020), March 30-April2, 2021, Online Only, France. Bellingham, WA:SPIE,2021, 11852:747-767.
[8]张学军.空间光学系统先进制造技术进展:从非球面到自由曲面[J].光学学报,2023, 43(8):0822009.ZHANG X J. Progress on space optics manufacturing:from aspheres to freeforms[J]. Acta Optica Sinica, 2023, 43(8):0822009.(in Chinese)
[9]蒋露松,陈宇,海小华,等.激光光源汽车前照灯自由曲面反射器设计[J].红外与激光工程,2023, 52(7):20230321.JIANG L S, CHEN Y, HAI X H, et al. Design of freeform reflector for laser light source automotive headlight[J]. Infrared and Laser Engineering, 2023, 52(7):20230321.(in Chinese)
[10] WILSON A, HUA H. Design and demonstration of a varifocal optical see-through head-mounted display using freeform Alvarez lenses[J]. Optics Express, 2019, 27(11):15627-15637.
[11] SU Y, GE J J, WANG Y C, et al. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2):258-282.
[12] ZHAN H. The wide-field multiband imaging and slitless spectroscopy survey to be carried out by the Survey Space Telescope of China Manned Space Program[J]. Chinese Science Bulletin, 2021, 66(11):1290-1298.
[13]师途,杨甬英,张磊,等.非球面光学元件的面形检测技术[J].中国光学,2014, 7(1):26-46.SHI T, YANG Y Y, ZHANG L, et al. Surface testing methods of aspheric optical elements[J]. Chinese Optics,2014, 7(1):26-46.(in Chinese)
[14] MALACARA D. Optical shop testing[M]. Array Hoboken,NJ:Wiley-Interscience, 2007.
[15]潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社,2004.
[16]焦松峰,谢启明,刘尧,等.光学非球面面形轮廓检测技术[J].红外技术,2023, 45(5):534-540.JIAO S F, XIE Q M, LIU Y, et al. Optical aspheric surface profile testing technology[J]. Infrared Technology,2023, 45(5):534-540.(in Chinese)
[17] SHEN Y J, REN J J, HUANG N D, et al. Surface form inspection with contact coordinate measurement:a review[J]. International Journal of Extreme Manufacturing, 2023,5(2):022006.
[18]梁子健,杨甬英,赵宏洋,等.非球面光学元件面型检测技术研究进展与最新应用[J].中国光学,2022, 15(2):161-186.LIANG Z J, YANG Y Y, ZHAO H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2):161-186.(in Chinese)
[19]朱日宏,孙越,沈华.光学自由曲面面形检测方法进展与展望[J].光学学报,2021, 41(1):0112001.ZHU R H, SUN Y, SHEN H. Progress and prospect of optical freeform surface measurement[J]. Acta Optica Sinica,2021, 41(1):0112001.(in Chinese)
[20] WECKENMANN A, KNAUER M, KUNZMANN H. The influence of measurement strategy on the uncertainty of CMM-measurements[J]. CIRP Annals, 1998, 47(1):451-454.
[21] OSAWA S, BUSCH K, FRANKE M, et al. Multiple orientation technique for the calibration of cylindrical workpieces on CMMs[J]. Precision Engineering, 2005, 29(1):56-64.
[22]王孝坤.利用三坐标测量仪拼接检测大口径非球面面形[J].红外与激光工程,2014, 43(10):3410-3415.WANG X K. Measurement of large aspheric surface by stitching and coordinate measuring machine[J]. Infrared and Laser Engineering, 2014, 43(10):3410-3415.(in Chinese)
[23] Carl Zeiss Industrial Metrology, LLC. The reference ZEISS XENOS[EB/OL].(2023-05-01)[2024-02-02]. https://www.zeiss.com/metrology/products/systems/cmm.html.
[24] AMETEK. Form TalysurfR PGI optics[EB/OL].(2024-01-10)[2024-02-02]. https://www.taylor-hobson.com/products/surface-profilers.
[25]刘力.基于激光跟踪仪的大口径非球面镜在位检测技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2017.LIU L. Research on the application of laser tracker in measurement of large aspheric mirror[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences, 2017.(in Chinese)
[26] BURGE J H, SU P, ZHAO C Y, et al. Use of a commercial laser tracker for optical alignment[C]//Proceedings of the Optical Engineering+Applications:Optical System Alignment and Tolerancing, August 26-30, 2007, San Diego,California, United States. Bellingham, WA:SPIE, 2007,6676:132-143.
[27] ZOBRIST T L, BURGE J H, MARTIN H M. Accuracy of laser tracker measurements of the GMT 8.4 m off-axis mirror segments[C]//Proceedings of the SPIE Astronomical Telescopes+Instrumentation:Modern Technologies in Spaceand Ground-based Telescopes and Instrumentation, June27-July 2, 2010, San Diego, California, United States.Bellingham, WA:SPIE, 2010, 7739:280-291.
[28]王孝坤.激光跟踪仪检验非球面面形的方法[J].光子学报,2012, 41(4):379-383.WANG X K. Measurement of aspherical sur faces by laser tracker[J]. Acta Photonica Sinica, 2012, 41(4):379-383.(in Chinese)
[29]陈佳夷,王聪,霍腾飞,等.激光跟踪仪检测大口径非球面方法研究[J].应用光学,2021, 42(2):299-303.CHEN J Y, WANG C, HUO T F, et al. Research on detection method of large-aperture aspheric surface by laser tracker[J]. Journal of Applied Optics, 2021, 42(2):299-303.(in Chinese)
[30]周贺,安欣欣,张建龙,等.航天制造业中激光跟踪技术分析[J].科技创新与应用,2023, 13(14):173-176.ZHOU H, AN X X, ZHANG J L, et al. Analysis of laser tracking technology in aerospace manufacturing industry[J].Technology Innovation and Application, 2023, 13(14):173-176.(in Chinese)
[31] AMETEK. LUPHOScan 850 HD[EB/OL].(2024-01-10)[2024-02-02]. https://www.taylor-hobson.com/products/non-contact-3d-optical-profilers/luphos/luphoscan-850-hd.
[32] HENSELMANS R, CACACE L, KRAMER G, et al.Nanometer level freeform surface measurements with the NANOMEFOS non-contact measurement machine[C]//Proceedings of SPIE Optical Engineering+Applications:Optical Manufacturing and Testing VIII, August 2-6, 2009,San Diego, Cali fornia, United States. Bellingham, WA:SPIE, 2009, 7426:46-56.
[33] Dutch United Instruments. NMF:the form metrology for asphere&freeform optics[EB/OL].(2023-10-19)[2024-02-02]. https://dutchunitedinstruments.com/form-metrology-products.
[34]范芯蕊,刁晓飞,吴剑威,等.高精度轴对称非球面反射镜轮廓测量方法(特邀)[J].红外与激光工程,2022,51(9):20220500.FAN X R, DIAO X F, WU J W, et al. High-precision profile measurement method for axisymmet ric aspheric mirror(invited)[J]. Infrared and Laser Engineering, 2022,51(9):20220500.(in Chinese)
[35] ANDERSON D S, PARKS RE, SHAO L Z. Versatile profilometer for aspheric optics[C]//Proceedings of the Optical Fabrication and Testing, June 12-14, 1990, Monterey,California. Washington, D.C.:Optica Publishing Group,1990:119-122.
[36] SMITH B K, BURGE J H, MARTIN H M. Fabrication of large secondary mirrors for astronomical telescopes[C]//Proceedings of the Optical Science, Engineering and Instrumentation′97:Optical Manufacturing and Testing II, July27-August 1, 1997, San Diego, CA, United States.Bellingham, WA:SPIE, 1997, 3134:51-61.
[37] SU P, OH C J, PARKS R E, et al. Swing arm optical CMM for aspherics[C]//Proceedings of the SPIE Optical Engineering+Applications:Optical Manufacturing and Testing VIII, August 2-6, 2009, San Diego, California,United States. Bellingham, WA:SPIE, 2009, 7426:150-157.
[38] BURGE J H, BENJAMIN S, CAYWOOD D, et al. Fabrication and testing of 1.4-m convex off-axis aspheric optical surfaces[C]//Proceedings of the SPIE Optical Engineering+Applications:Optical Manufacturing and Testing VIII,August 2-6, 2009, San Diego, California, United States.Bellingham, WA:SPIE, 2009, 7426:167-178.
[39] ZHANG X J, HU H X, WANG X K, et al. Challenges and strategies in high-accuracy manufac turing of the world′s largest SiC aspheric mirror[J]. Light, Science&Applications, 2022, 11(1):310.
[40] XIONG L, QI E H, LUO X, et al. Stitching swing arm profilometer test for large aperture aspherics[J]. Chinese Optics Letters, 2019, 17(11):112201.
[41]贾立德,王家伍,郑子文,等.光学非球面形摆臂式测量不确定度分析[J].中国机械工程,2009, 20(17):2040-2044.JIA L D, WANG J W, ZHENG Z W, et al. Uncertainty analysis on swing-arm profilometer for optical aspherics[J].China Mechanical Engineering, 2009, 20(17):2040-2044.(in Chinese)
[42] JING H W, KING C, WALKER D. Simulation and validation of a prototype swing arm pro filometer for measuring extremely large telescope mirror-segments[J]. Optics Express, 2010, 18(3):2036-2048.
[43]高明星.摆臂式轮廓仪旋转轴空间状态标定技术研究[D].成都:中国科学院研究生院(光电技术研究所),2016.GAO M X. Research on the calibration of the space state of the axis for Swing Arm Profilometer[D]. Chengdu:Institute of Optics and Electronics, Chinese Academy of Sciences, 2016.(in Chinese)
[44] FOUCAUT L M. Description des procédés employés pour reconnaitre la configuration des surfaces optiques[J]. Comptes Rendus Hebdomadaires des séances de l′Académie des Sciences, 1858, 47:958-959.
[45]张鑫.大口径拼接非球面镜曲率一致性高精度检测技术研究[D].长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所),2023.ZHANG X. Research on high-precision test technology for curvature consistency of large aperture segmented aspherical mirrors[D]. Changchun:Changchun Institute of Optics,Fine Mechanics and Physics, Chinese Academy of Sciences, 2023.(in Chinese)
[46]杨斌.刀口仪数字化技术的研究[D].南京:南京理工大学,2011.YANG B. Research on digiti zation technology of foucault tester[D]. Nanjing:Nanjing University of Science and Technology, 2011.(in Chinese)
[47] VANDENBERG D E, HUMBEL W D, WERTHEIMER A.Quantitative evaluation of optical surfaces using an improved Foucault test approach[C]//Proceedings of the San Diego,′91:Active and Adaptive Optical Systems, July21, 1991, San Diego, CA, United States. Bellingham,WA:SPIE, 1991, 1542:534-542.
[48] VANDENBERG D E, HUMBEL W D, WERTHEIMER A.Quantitative evaluation of optical surfaces by means of an improved Foucault test approach[J]. Optical Engineering,1993, 32(8):1951-1954.
[49] YUAN L J, WU Z H. Research on technique of wavefront retrieval based on Foucault test[C]//Proceedings of the 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies:Large Mirrors and Telescopes, April 26-29, 2010, Dalian, China. Bellingham,WA:SPIE, 2010, 7654:15-20.
[50] JING H W, YANG W, FAN B, et al. Quantitative measurement of optical surfaces using an improved knife edge[C]//Proceedings of the 4th International Symposium on Advanced Optical Manufac turing and Testing Technologies:Optical Test and Measurement Technology and Equipment, November 19-21, 2008, Chengdu, China. Bellingham, WA:SPIE, 2009, 7283:192-196.
[51]华翔,焦兆阳,朱健强.基于刀口仪轴向移动的自动化非球面检测技术[J].光学学报,2022, 42(23):2312003.HUA X, JIAO Z Y, ZHU J Q. Automatic aspheric surface testing technology based on axial movement of knife-edge instrument[J]. Acta Optica Sinica, 2022, 42(23):2312003.(in Chinese)
[52]王小鹏.大口径非球面数字刀口仪测试技术研究[D].南京:南京理工大学,2010.WANG X P. Research on digital knife-edge technique to measure the large aperture aspheric optical element[D].Nanjing:Nanjing University of Science and Technology,2010.(in Chinese)
[53]王小鹏,朱日宏,王雷,等.数字刀口仪定量检验非球面光学元件面形[J].光学学报,2011, 31(1):0112008.WANG X P, ZHU R H, WANG L, et al. Digitized Foucault tester for quantitative evaluation the surface of aspheric optical elements[J]. Acta Optica Sinica, 2011, 31(1):0112008.(in Chinese)
[54] HUANG L, IDIR M, ZUO C, et al. Review of phase measuring deflectometry[J]. Optics and Lasers in Engineering,2018, 107:247-257.
[55]沈远闻.数字条纹投影技术算法研究[D].济南:山东大学,2020.SHEN Y W. Research on digital fringe projection algorithm[D]. Jinan:Shandong University, 2020.(in Chinese)
[56]王朝阳,戴福隆.条纹图象的数字化自动分析处理技术之二:相位分析法[J].光子学报,1999, 28(11):996-1001.WANG Z Y, DAI F L. Automatic fringe patterns analysis using digital processing techniques:ⅱphase analysis method[J]. Acta Photonica Sinica, 1999, 28(11):996-1001.(in Chinese)
[57] WANG Z Y, DU H, PARK S, et al. Three-dimensional shape measurement with a fast and accurate approach[J].Applied Optics, 2009, 48(6):1052-1061.
[58] WANG Z. Theory and applications of random phase shifting technique[C]//Proceedings of the International Conference on Experimental Mechanics, November 8-11, 2008,Nanjing, China. Bellingham, WA:SPIE, 2009, 7375:528-534.
[59] VO M, WANG Z Y, PAN B, et al. Hyper-accurate flexible calibration technique for fringe-projection-based threedimensional imaging[J]. Optics Express, 2012, 20(15):16926-16941.
[60] LE H N D, NGUYEN H, WANG Z Y, et al. 3D endoscopic imaging using structured illumination technique(conference presentation)[C]//proceedings of the SPIE BIOS:Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, January 28-February 2, 2017, San Francisco, California, United States. Bellingham, WA:SPIE,2017, 10054:157.
[61] NGUYEN A H, LY K L, LI C Q, et al. Single-shot 3D shape acquisition using a learning-based structured-light technique[J]. Applied Optics, 2022, 61(29):8589-8599.
[62] NGUYEN H, DUNNE N, LI H, et al. Real-time 3D shape measurement using 3LCD projection and deep machine learning[J]. Applied Optics, 2019, 58(26):7100-7109.
[63] LV S Z, KEMAO Q. Modeling the measurement precision of Fringe Projection Profilometry[J]. Light, Science&Applications, 2023, 12(1):257.
[64] LI Y Y, WU Z, SHEN J F, et al. Real-time 3D shape measurement of dynamic scenes using fringe projection profilometry:lightweight NAS-optimized dual frequency deep learning approach[J]. Optics Express, 2023, 31(24):40803-40823.
[65] REICH C, RITTER R, THESING J. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection[J]. Optical Engineering, 2000, 39(1):224-231.
[66]王孝坤,刘忠凯,胡海翔,等.自由曲面光学镜片检测方法:CN116105633B[P]. 2023-07-07.
[67] KNAUER M C, KAMINSKI J, HAUSLER G. Phase measuring deflectometry:a new approach to measure specular free-form surfaces[C]//Proceedings of the Photonics Europe:Optical Metrology in Pro duction Engineering, April26-30, 2004, Strasbourg, France. Bellingham, WA:SPIE,2004, 5457:366-376.
[68] BOTHE T, LI W S, VON KOPYLOW C, et al. High-resolution 3D shape measurement on specular surfaces by fringe reflection[C]//Proceedings of the Photonics Europe:Optical Metrology in Production Engineering, April 26-30, 2004, Strasbourg, France. Bellingham, WA:SPIE,2004, 5457:411-422.
[69] H?USLER G, FABER C, OLESCH E, et al. Deflectometry vs. interferometry[C]//Proceedings of the SPIE Optical Metrology 2013:Optical Measurement Systems for Industrial Inspection VIII, May 13-16, 2013, Munich, Germany.Bellingham, WA:SPIE, 2013, 8788:367-377.
[70] SU P, WANG S S, KHREISHI M, et al. SCOTS:a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments[C]//Proceedings of the SPIE Astronomical Telescopes+Instrumentation:Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, July 1-6, 2012, Amsterdam, Netherlands. Bellingham, WA:SPIE, 2012, 8450:332-340.
[71]袁婷.基于条纹反射法的大口径非球面反射镜面形检测技术研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2016.YUAN T. Study on fringe-reflection optical surface shape measurement technology for large aspheric mirror[D].Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016.(in Chinese)
[72]邵山川,陶小平,王孝坤.基于条纹反射的超精密车削反射镜的在位面形检测[J].激光与光电子学进展,2018,55(7):299-301.SHAO S C, TAO X P, WANG X K. On-machine surface shape measurement of reflective mirrors by ultra-precision turning based on fringe reflection[J]. Laser&Optoelectronics Progress, 2018, 55(7):299-301.(in Chinese)
[73]宋倩.相移条纹投影法的关键技术研究[D].南京:南京理工大学,2014.SONG Q. Research on key technologies of phase-shift fringe projection method[D]. Nanjing:Nanjing University of Science and Technology, 2014.(in Chinese)
[74]赵文川,钟显云,刘彬.基于条纹反射的光学表面疵病检测法[J].光子学报,2014, 43(9):0912007.ZHAO W C, ZHONG X Y, LIU B. The surface flaws inspection of optical components based on the fringe reflection[J]. Acta Photonica Sinica, 2014, 43(9):0912007.(in Chinese)
[75]李明阳.基于条纹反射的太阳能电池硅晶片表面质量检测方法研究[D].成都:电子科技大学,2016.LI M Y. Study on the solar cell wafer surface quality inspection based on the fringe reflection technique[D]. Chengdu:University of Electronic Science and Technology of China, 2016.(in Chinese)
[76]雷柏平,伍凡,陈强.大口径非球面Ronchi光栅测量方法[J].光电工程,2007, 34(4):140-144.LEI B P, WU F, CHEN Q. Measurement of large-aperture aspheric surfaces with Ronchi grating test method[J]. OptoElectronic Engineering, 2007, 34(4):140-144.(in Chinese)
[77] LEI B P, WU F, ZHOU C B. Quantitative measurement ofΦ630 mm F/1.34 parabolic surfaces with Ronchi grating test method[J]. Chinese Optics Letters, 2009, 7(7):590-592.
[78]包兴臻,何锋赟,赵楠,等.基于Ronchi光栅检测非球面镜系统中的杂光现象分析[J].红外,2023, 44(1):1-10.BAO X Z, HE F Y, ZHAO N, et al. Analysis of stray light in aspheric mirror system detection based on Ronchi grating[J]. Infrared, 2023, 44(1):1-10.(in Chinese)
[79]包兴臻,何锋赟,赵楠,等. Ronchi光栅检测非球面镜系统的设计及实验研究[J].光学技术,2023, 49(1):57-63.BAO X Z, HE F Y, ZHAO N, et al. Design and experimental research of aspheric mirror system based on Ronchi grating testing[J]. Optical Technique, 2023, 49(1):57-63.(in Chinese)
[80] PLATT B C, SHACK R. History and principles of ShackHartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5):S573-S577.
[81] NEAL D R, ARMSTRONG D J, TURNER W T. Wavefront sensors for control and processing monitoring in optics manufacture[C]//Proceedings of the Photonics West′97:Lasers as Tools for Manufacturing II, February 8-14, 1997,San Jose, CA, United States. Bellingham, WA:SPIE, 1997,2993:211-220.
[82] GUO W J, ZHAO L P, TONG C S, et al. Adaptive centroid-finding algorithm for freeform sur face measurements[J]. Applied Optics, 2013, 52(10):D75-D83.
[83] YANG H S, LEE Y W, LEE J H, et al. Implementation of Hartmann test for measuring 0.9-m aspheric mirror[C]//Proceedings of the Photonics Asia:Optical Design and Testing II, November 8-11, 2004, Beijing, China. Bellingham, WA:SPIE, 2005, 5638:154-163.
[84] PFUND J, LINDLEIN N, SCHWIDER J. Misalignment effects of the Shack-Hartmann sensor[J]. Applied Optics,1998, 37(1):22-27.
[85]张金平.夏克-哈特曼波前传感器检测大口径非球面应用研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2012.ZHANG J P. Research on testing aspherical surface using Shack-Hartmann wavefront sensor[D]. Changchun:Changchun Institute of Optics, Fine Me chanics and Physics,Chinese Academy of Sciences, 2012.(in Chinese)
[86] WANG J, WANG X K, PENG L R, et al. Method for testing freeform surfaces based on a Shack-Hartmann sensor with plane wavefront scanning and stitching[J]. Optics Express, 2023, 31(22):36702-36724.
[87]王晶,王孝坤,胡海翔,等.夏克哈特曼扫描拼接检测平面镜(特邀)[J].红外与激光工程,2021, 50(10):20210527.WANG J, WANG X K, HU H X, et al. Shack-Hartmann scanning and stiching detection plane mirror(invited)[J].Infrared and Laser Engineering, 2021, 50(10):20210527.(in Chinese)
[88]魏平,李新阳,罗曦,等.夏克-哈特曼波前传感器数字仿真平台的设计和验证[J].中国激光,2021, 48(17):1710001.WE P, LI X Y, LUO X, et al. Design and verification of digital simulation platform for Shack-Hartmann wavefront sensors[J]. Chinese Journal of Lasers, 2021, 48(17):1710001.(in Chinese)
[89]邓婷.基于DMD的大陡度面形检测技术[D].成都:中国科学院大学(中国科学院光电技术研究所),2022.DENG T. Detection technique of steep surface base on DMD[D]. Chengdu:Institute of Optics and Electronics,Chinese Academy of Sciences, 2022.(in Chinese)
[90] Stahl H P. Testing aspheric components:null tests[J].Lasers&Optronics, 1990, 9(8):63-65.
基本信息:
DOI:10.12194/j.ntu.20240206001
中图分类号:TH74
引用信息:
[1]刘斌,王孝坤,程强等.复杂曲面光学元件高精度面形检测技术概述[J].南通大学学报(自然科学版),2024,23(01):1-27.DOI:10.12194/j.ntu.20240206001.
基金信息:
国家自然科学基金重大科研仪器研制项目(62127901); 国家重点研发计划项目(2022YFB3403400); 中国科学院大学生创新实践训练计划项目(Y9I838S)