57 | 0 | 36 |
下载次数 | 被引频次 | 阅读次数 |
针对阶数位于1~2之间的一类具有扇形死区的分数阶神经网络系统同步问题进行研究。通过变量替换法,将阶数在(1,2)上的分数阶神经网络系统同步问题转化为阶数在(0,1)上的同步问题。由于分数阶神经网络中含有未知非线性函数项,因此,使用Lipschitz连续条件进行逼近,将未知函数转化为已知函数,但存在一定误差。为了使从神经网络跟踪主神经网络,设计了合适的同步控制器。基于Lipschitz稳定性准则,分析了同步误差系统的收敛性。最后,给出相关仿真实例,并通过该实例中主-从神经网络系统及误差系统的图像,验证了所提方法的有效性。
Abstract:Synchronization is examined for a class of fractional order neural network systems with sector dead zones and orders between 1 and 2. Through variable replacement, the synchronization problem for systems with orders in(1,2) is reformulated as one with orders in(0, 1). Unknown nonlinear functions within these networks are approximated using Lipschitz continuity conditions, converting them into known functions with a residual error. A synchronization controller is constructed to align the slave neural network with the master neural network. Convergence of the synchronization error system is assessed using the Lipschitz stability criterion. Simulation examples are provided,with graphical depictions of the master-slave neural network system and error system illustrating the method′ s performance.
[1] SABZALIAN M H, MOHAMMADZADEH A, LIN S Y, et al. Robust fuzzy control for fractional-order systems with estimated fraction-order[J]. Nonlinear Dynamics, 2019, 98(3):2375-2385.
[2] LIU X L, ZHANG Z, LIU H Z. Consensus control of fractional-order systems based on delayed state fractional order derivative[J]. Asian Journal of Control, 2017, 19(6):2199-2210.
[3]沈琴琴,张智杰,齐绪存,等.基于分数阶季节性灰色模型的交通流预测[J].南通大学学报(自然科学版),2021, 20(2):37-42.SHEN Q Q, ZHANG Z J, QI X C, et al. Traffic flow prediction based on fractional seasonal grey model[J]. Journal of Nantong University(Natural Science Edition), 2021, 20(2):37-42.(in Chinese)
[4] HE S B, SUN K H, WANG H H. Dynamics of the fractional-order Lorenz system based on adomian decomposition method and its DSP implementation[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(5):1298-1300.
[5]朱佳庆,姚宇,张国东.一类分数阶复值神经网络的有限时间同步[J].南通大学学报(自然科学版),2023, 22(4):62-68.ZHU J Q, YAO Y, ZHANG G D. Finite-time synchronization for a class of fractional-order complex-valued neural networks[J]. Journal of Nantong University(Natural Science Edition), 2023, 22(4):62-68.(in Chinese)
[6]熊林海,吴朝俊,徐楚岩.基于分数阶双忆阻器的多稳态混沌系统及其FPGA实现[J].固体电子学研究与进展,2024, 44(1):77-83.XIONG L H, WU C J, XU C Y. Multistable chaotic system based on fractional order double memristor and its FPGA implementation[J]. Research&Progress of SSE, 2024,44(1):77-83.(in Chinese)
[7]邬忆萱,寇春海.一类分数阶时滞微分系统的精确解及Hyers-Ulam稳定性[J].东华大学学报(自然科学版),2024, 50(1):152-162.WU Y X, KOU C H. Exact solution and Hyers-Ulam stability of a class of fractional delay differential systems[J].Journal of Donghua University(Natural Science), 2024, 50(1):152-162.(in Chinese)
[8] JIANG L, WANG T, HUANG Q X. Analysis of dynamic characteristics of forced and free vibrations of mill roll system based on fractional order theory[J]. Journal of Beijing Institute of Technology, 2023, 32(5):640-652.
[9]王雪,丁小帅,李剑.具有非线性耦合的分数阶神经网络的聚类同步[J].南通大学学报(自然科学版),2023,22(4):33-42.WANG X, DING X S, LI J. Cluster synchronization for fractional-order neural networks with nonlinear coupling[J].Journal of Nantong University(Natural Science Edition),2023, 22(4):33-42.(in Chinese)
[10]宋倩倩,程尊水.基于反馈控制的分数阶复值神经网络的Hopf分岔[J].南通大学学报(自然科学版),2023, 22(3):56-71.SONG Q Q, CHENG Z S. Hopf bifurcation of fractional complex-valued neural networks based on feedback control[J]. Journal of Nantong University(Natural Science Edition), 2023, 22(3):56-71.(in Chinese)
[11]张玮玮,陈定元,吴然超,等.一类基于忆阻器分数阶时滞神经网络的修正投影同步[J].应用数学和力学,2018, 39(2):239-248.ZHANG W W, CHEN D Y, WU R C, et al. Modified projective synchronization of memristor-based fractionalorder delayed neural networks[J]. Applied Mathematics and Mechanics, 2018, 39(2):239-248.(in Chinese)
[12] LIU H, LI S G, WANG H X, et al. Adaptive synchronization for a class of uncertain fractional-order neural networks[J]. Entropy, 2015, 17(10):7185-7200.
[13] BAO H B, PARK J H, CAO J D. Adaptive synchronization of fractional-order output-coupling neural networks via quantized output control[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(7):3230-3239.
[14] ZHANG F H, ZENG Z G. Asymptotic stability and synchronization of fractional-order neural networks with unbounded time-varying delays[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(9):5547-5556.
[15]田小敏,费树岷,柴琳.具有死区输入的分数阶混沌系统的有限时间同步[J].控制理论与应用,2015, 32(9):1240-1245.TIAN X M, FEI S M, CHAI L. Finite-time synchronization of fractional-order chaotic systems by considering dead-zone phenomenon[J]. Control Theory&Applications,2015, 32(9):1240-1245.
[16]林福宁,薛广明,李生刚,等.一类具有扇形死区的分数阶神经网络系统的模糊自适应同步[J].模糊系统与数学,2021, 35(4):72-79.LIN F N, XUE G M, LI S G, et al. Fuzzy adaptive synchronization of a class of fractional-order neural network systems with sector dead-zones[J]. Fuzzy Systems and Mathematics, 2021, 35(4):72-79.(in Chinese)
[17] WEI X, LIU D Y, BOUTAT D. Nonasymptotic pseudostate estimation for a class of fractional order linear systems[J]. IEEE Transactions on Automatic Control, 2017,62(3):1150-1164.
[18] HAO Y L, HUANG C D, CAO J D, et al. Positivity and stability of fractional-order linear time-delay systems[J].Journal of Systems Science and Complexity, 2022, 35(6):2181-2207.
[19] DAI H, CHEN W S. New power law inequalities for fractional derivative and stability analysis of fractional order systems[J]. Nonlinear Dynamics, 2017, 87(3):1531-1542.
[20] LIU H, LI S G, WANG H X, et al. Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones[J]. Information Sciences, 2018, 454:30-45.
[21]王兴元,刘明.用滑模控制方法实现具有扇区非线性输入的主从混沌系统同步[J].物理学报,2005, 54(6):2584-2589.WANG X Y, LIU M. Sliding mode control for the synchronization of master-slave chaotic systems with sector nonlinear input[J]. Acta Physica Sinica, 2005, 54(6):2584-2589.(in Chinese)
[22] ROOHI M, AGHABABA M P, HAGHIGHI A R. Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities[J].Complexity, 2015, 21(2):211-223.
[23] TUAN H T, TRINH H. Stability of fractional-order nonlinear systems by Lyapunov direct method[J]. IET Control Theory&Applications, 2018, 12(17):2417-2422.
[24] ECHENAUS魱A-MONROY J L, RODR魱GUEZ-MART魱NE C A, ONTA?óN-GARC魱A L J, et al. Synchronization in dynamically coupled fractional-order chaotic systems:studying the effects of fractional derivatives[J]. Complexity,2021, 2021(1):1-12.
[25]刘恒,李生刚,孙业国,等.带有未知非对称控制增益的不确定分数阶混沌系统自适应模糊同步控制[J].物理学报,2015, 64(7):128-136.LIU H, LI S G, SUN Y G, et al. Adaptive fuzzy synchronization for uncertain fractional-order chaotic systems with unknown non-symmetrical control gain[J]. Acta Physica Sinica, 2015, 64(7):128-136.(in Chinese)
基本信息:
DOI:10.12194/j.ntu.20240424001
中图分类号:TP183
引用信息:
[1]蒋文芳,刘恒.一类具有扇形死区的分数阶神经网络系统同步[J].南通大学学报(自然科学版),2025,24(01):51-57.DOI:10.12194/j.ntu.20240424001.
基金信息: