江苏科技大学理学院
研究了可数离散群在紧度量空间étale等价关系上的自同构作用。文章引入了自同构系统上连续强轨道等价的定义,证明了共轭的两个自同构系统一定是连续强轨道等价的,反之,在本质自由和离散群是顺从无挠的条件下,满足刚性条件的两个连续强轨道等价的自同构系统是共轭的。
50 | 0 | 59 |
下载次数 | 被引频次 | 阅读次数 |
[1]MURRAY F J,VON NEUMANN J.On rings of operators[J].Annals of Mathematics,1936,37(1):116-229.
[2]DYE H A.On groups of measure preserving transformations,I[J].American Journal of Mathematics,1959,81(1):119-159.
[3]DYE H A.On groups of measure preserving transformations,II[J].American Journal of Mathematics,1963,85(4):551-576.
[4]KRIEGER W.On ergodic flows and the isomorphism of factors[J].Mathematische Annalen,1976,223(1):19-70.
[5]GIORDANO T,PUTNAM I F,SKAU C F.Topological orbit equivalence and C*-crossed products[J].Journal fur die Reine und Angewandte Mathematik,1995,469:51-111.
[6]TOMIYAMA J.Topological full groups and structure of normalizers in transformation group C*-algebras[J].Pacific Journal of Mathematics,1996,173(2):571-583.
[7]MATSUMOTO K,MATUI H.Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras[J].Kyoto Journal of Mathematics,2014,54(4):863-877.
[8]MATSUMOTO K.Asymptotic continuous orbit equivalence of Smale spaces and Ruelle algebras[J].Canadian Journal of Mathematics,2019,71(5):1243-1296.
[9]LI X.Continuous orbit equivalence rigidity[J].Ergodic Theory and Dynamical Systems,2018,38(4):1543-1563.
[10]CORDEIRO L G,BEUTER V.The dynamics of partial inverse semigroup actions[J].Journal of Pure and Applied Algebra,2020,224(3):917-957.
[11]LI X.Partial transformation groupoids attached to graphs and semigroups[J].International Mathematics Research Notices,2017,2017(17):5233-5259.
[12]羌湘琦,侯成军.半群作用的共轭性[J].曲阜师范大学学报(自然科学版),2022,48(3):89-94.QIANG X Q,HOU C J.Conjugacy of semigroup actions[J].Journal of Qufu Normal University (Natural Science),2022,48(3):89-94.
[13]YI I.Continuous orbit equivalences on self-similar groups[J].Bulletin of the Korean Mathematical Society,2021,58(1):133-146.
[14]MATSUMOTO K.On one-sided topological conjugacy of topological Markov shifts and gauge actions on CuntzKrieger algebras[J].Ergodic Theory and Dynamical Systems,2022,42(8):2575-2582.
[15]CARLSEN T M,EILERS S,ORTEGA E,et al.Flow equivalence and orbit equivalence for shifts of finite type and isomorphism of their groupoids[J].Journal of Mathematical Analysis and Applications,2019,469 (2):1088-1110.
[16]HOU C J,QIANG X Q.Asymptotic continuous orbit equivalence of expansive systems[J].Studia Mathematica,2021,259(2):201-224.
[17]羌湘琦.拓扑动力系统的连续轨道等价与广群C*-代数理论[D].扬州:扬州大学,2023.QIANG X Q.Continuous orbit equivalence of topological dynamical systems and groupoid C*-algebra theory[D].Yangzhou:Yangzhou University,2023.(in Chinese)
[18]RENAULT J.A groupoid approach to C*-algebra[M].Berlin:Springer-Verlag,1980.
[19]BROWN J,CLARK L O,FARTHING C,et al.Simplicity of algebras associated toétale groupoids[J].Semigroup Forum,2014,88(2):433-452.
[20]MITREA D,MITREA I,MITREA M,et al.Groupoid metrization theory[M].Boston:Birkh?user,2013.
基本信息:
DOI:10.12194/j.ntu.20230926001
中图分类号:O189.11
引用信息:
[1]羌湘琦.自同构系统的拓扑刚性[J].南通大学学报(自然科学版),2024,23(03):89-94.DOI:10.12194/j.ntu.20230926001.
基金信息:
国家自然科学基金青年科学基金项目(12401156)