nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.24 64-74
基于双锚点图的多视图模糊聚类
基金项目(Foundation):
邮箱(Email): weizhang@ntu.edu.cn
DOI: 10.12194/j.ntu.20250610001
摘要:

随着多视图学习的迅速发展,如何有效地整合来自不同视图的信息进行聚类分析,已成为当前学术界和工业界的重要研究课题,并推动了一系列高效方法的涌现。然而,现有的方法仍面临三大挑战。第一,现实数据往往具有不确定性和低判别性特征,因此直接从原始数据提取锚点图会导致性能欠佳;第二,现有方法大多假设视图间存在共性信息并依靠此类信息进行聚类,却忽视了各视图的特性信息;第三,如何进一步探索和利用所学锚点图来提升聚类性能仍是一个开放性的问题。对此,提出了一种新型双锚点图模糊聚类方法。针对前2个问题,设计基于矩阵分解的双锚点图学习框架,通过提取各视图的高判别性隐式表征,从中推导出共有锚点图和特定锚点图;针对第3个问题,开发具有协同学习机制的锚点图模糊聚类方法,构建双锚点图驱动的模糊隶属度结构保持机制以提升聚类质量。同时,还引入负香农熵实现视图权重的自适应调整。最后,本文在多个基准数据集上进行了广泛的实验验证。结果表明,提出的DAG_FC方法在大多数指标和数据集上都展现出显著优势。特别是在Yale数据集上,DAG_FC的NMI值相较于对比方法分别高出约30%和20%。此外,实验也证实基于锚点图的聚类方法在性能上普遍优于传统的基于子空间的聚类方法。通过引入潜在表征提取技术和设计专用的聚类算法,本文进一步提升了所提方法的聚类性能。

Abstract:

In recent years, with the rapid development of multi-view learning, how to effectively integrate information from different views for clustering analysis has become an important research topic in both academia and industry,driving the emergence of numerous efficient methods. However, current methods still face three major challenges.First, suboptimal anchor graphs often result from the inherent uncertainty and low discriminability of real-world data.Second, prevalent approaches primarily focus on common information between views, overlooking valuable view-specific information. Third, effectively leveraging the learned anchor graph to improve clustering remains under-explored.To overcome these challenges, this paper proposes a novel dual anchor graph fuzzy clustering framework. To address the first two challenges, we design a matrix factorization-based dual anchor graph learning framework. This framework extracts discriminative hidden representations from each view and subsequently derives both common and specific anchor graphs. For the third challenge, we develop an anchor graph fuzzy clustering method with a cooperative learning mechanism. This method constructs a dual anchor graph-driven fuzzy membership structure preservation mechanism to enhance clustering quality. Additionally, we introduce negative Shannon entropy to achieve adaptive view weighting. Extensive experiments on multiple benchmark datasets validate the effectiveness of the proposed DAG_FC method. The results show that DAG_FC outperforms competing methods on most metrics and datasets,achieving NMI improvements of approximately 30% and 20% over comparative methods on the Yale dataset. Moreover, the experiments also confirm that anchor graph-based clustering methods generally perform better than traditional subspace-based clustering methods. By incorporating hidden representation extraction techniques and designing specialized clustering algorithms, this paper further enhances the clustering performance of the proposed method.

参考文献

[1] NIE F P, WANG X Q, JORDAN M I, et al. The constrained Laplacian rank algorithm for graph-based clustering[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,Arizona. New York:Association for Computing Machinery,2016:1969-1976.

[2] WANG H, YANG Y, LIU B. GMC:graph-based multiview clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6):1116-1129.

[3] LIANG W X, LIU X W, ZHOU S H, et al. Robust graphbased multi-view clustering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(7):7462-7469.

[4] ZHOU S H, LIU X W, LI M M, et al. Multiple kernel clustering with neighbor-kernel subspace segmentation[J].IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(4):1351-1362.

[5] CAO X C, ZHANG C Q, FU H Z, et al. Diversity-induced multi-view subspace clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), June 7-12, 2015, Boston, MA.New York:IEEE Xplore, 2015:586-594.

[6] XU N, GUO Y Q, ZHENG X, et al. Partial multi-view subspace clustering[C]//Proceedings of the 26th ACM International Conference on Multimedia , October 22-26 ,2018, Seoul, Republic of Korea. New York:Association for Computing Machinery, 2018:1794-1801.

[7] LIANG Y W, HUANG D, WANG C D, et al. Multi-view graph learning by joint modeling of consistency and inconsistency[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2):2848-2862.

[8] CAI X S, HUANG D, ZHANG G Y, et al. Seeking commonness and inconsistencies:a jointly smoothed approach to multi-view subspace clustering[J]. Information Fusion ,2023, 91:364-375.

[9] LIU S Y, WANG S W, ZHANG P, et al. Efficient onepass multi-view subspace clustering with consensus anchors[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(7):7576-7584.

[10] KANG Z, ZHOU W T, ZHAO Z T, et al. Large-scale multi-view subspace clustering in linear time[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020, 34(4):4412-4419.

[11] ZHANG P, WANG S W, LI L, et al. Let the data choose:flexible and diverse anchor graph fusion for scalable multiview clustering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(9):11262-11269.

[12] WANG S W, LIU X W, LIU S Y, et al. Align then fusion:generalized large-scale multi-view clustering with anchor matching correspondences[EB/OL].(2022-03-30)[2025-04-10]. https://arxiv.org/abs/2205.15075.

[13] SUN M J, ZHANG P, WANG S W, et al. Scalable multiview subspace clustering with unified anchors[C]//Proceedings of the 29th ACM International Conference on Multimedia, October 20-24, 2021, Virtual Event, China. New York:Association for Computing Machinery, 2021:3528-3536.

[14] WANG S W, LIU X W, ZHU X Z, et al. Fast parameterfree multi-view subspace clustering with consensus anchor guidance[J]. IEEE Transactions on Image Processing, 2022,31:556-568.

[15] ZHANG C, JIA X Y, LI Z C, et al. Learning cluster-wise anchors for multi-view clustering[C]//Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence, New York:Association for Computing Machinery, 2024:16696-16704.

[16] LAO J H, HUANG D, WANG C D, et al. Towards scalable multi-view clustering via joint learning of many bipartite graphs[J]. IEEE Transactions on Big Data , 2024,10(1):77-91.

[17] OU Q Y, WANG S W, ZHANG P, et al. Anchor-based multi-view subspace clustering with hierarchical feature descent[J]. Information Fusion, 2024, 106:102225.

[18] LIU S Y, LIU X W, WANG S W, et al. Fast incomplete multi-view clustering with view-in dependent anchors[J].IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(6):7740-7751.

[19] NIE F P, WANG X Q, DENG C, et al. Learning a structured optimal bipartite graph for co-clustering[C]//Proceedings of the 31st International Conference on Neural Information Processing Sys tems, December 4-9, 2017, Long Beach, California, USA. New York:Association for Computing Machinery, 2017:4132-4141.

[20] ZHANG W, DENG Z H, ZHANG T, et al. One-step multiview fuzzy clustering with collaborative learning between common and specific hidden space information[J]. IEEE Transactions on Neural Networks and Learning Systems,2024, 35(10):14031-14044.

[21] LUO S R, ZHANG C Q, ZHANG W, et al. Consistent and specific multi-view subspace clustering[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, February2-7, 2018, New Orleans, Louisiana, USA. New York:Association for the Advancement of Artificial Intelligence,2018:3730-3737.

[22] CHEN X L, CAI D. Large scale spectral clustering with landmark-based representation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2011, 25(1):313-318.

[23] YU S J, WANG S W, ZHANG P, et al. DVSAI:diverse view-shared anchors based incomplete multi-view clustering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(15):16568-16577.

[24] LI J, GAO Q X, WANG Q Q, et al. Tensorized label learning on anchor graph[C]//Proceedings of the ThirtyEighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence, New York:Association for Computing Machinery, 2024:13537-13544.

[25] YU W Z, XING L Y, NIE F P, et al. Multiview fuzzy clustering based on anchor graph[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(3):755-766.

[26] ZHANG C B, CHEN L, SHI Z Y, et al. Latent information-guided one-step multi-view fuzzy clustering based on cross-view anchor graph[J]. Information Fusion , 2024 ,102:102025.

[27] FU Y L, LI Y T, HUANG Q, et al. Anchor graph network for incomplete multiview clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(2):3708-3719.

[28] ZHAO L, WANG Z H, YUAN Y K, et al. Unrestricted anchor graph based GCN for incom plete multi-view clustering[C]//Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), June 4-10, 2023, Rhodes Island,Greece. New York:IEEE Xplore, 2023:1-5.

[29] XU J L, HAN J W, XIONG K, et al. Robust and sparse fuzzy K-means clustering[C]//Proceedings of the TwentyFifth International Joint Conference on Artificial Intelligence, July 9-15, 2016, New York, USA. New York:Association for Computing Machinery, 2016:2224-2230.

[30] HAN J W, XU J L, NIE F P, et al. Multi-view K-means clustering with adaptive sparse memberships and weight allocation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(2):816-827.

[31] YANG H T, DENG Z H, ZHANG W, et al. End-to-end multiview fuzzy clustering with double representation learning and visible-hidden view cooperation[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(2):483-497.

[32] ZHU X F, ZHANG S C, ZHU Y H, et al. Self-weighted multi-view fuzzy clustering[J]. ACM Transactions on Knowledge Discovery from Data, 2020, 14(4):1-17.

[33] ZHANG W, DENG Z H, CHOI K S, et al. End-to-end incomplete multiview fuzzy clustering with adaptive missing view imputation and cooperative learning[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(5):1445-1459.

[34] WHITE M, YU Y L, ZHANG X H, et al. Convex multiview subspace learning[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada.New York:Curran Associates Inc, 2012:1673-1681.

[35] FU Z Q, ZHAO Y, CHANG D X, et al. Latent low-rank representation with weighted distance penalty for clustering[J]. IEEE Transactions on Cyber netics, 2023, 53(11):6870-6882.

[36] BEZDEK J C, HATHAWAY R J. Convergence of alternating optimization[J]. Neural, Parallel&Scientific Computations, 2003, 11(4):351-368.

[37] ZHANG W, DENG Z H, ZHANG T, et al. Incomplete multiple view fuzzy inference system with missing view imputation and cooperative learning[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(8):3038-3051.

[38] WINN J, JOJIC N. Learning object classes with unsupervised segmentation[C]//Proceedings of the Tenth IEEE International Conference on Computer Vision(ICCV′05),October 17-21, 2005, Beijing, China. New York:IEEE Xplore, 2005:756-763.

[39] SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification[C]//Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, December 5-7, 1994, Sarasota, FL, USA. New York:IEEE Xplore, 2002:138-142.

[40] The UCI Machine Learning Repository. Image Segmentation[EB/OL][2025-02-10]. https://archive.ics.uci.edu/dataset/50/image+segmentation.

[41] KUMAR A, DAUM魪H III. A co-training approach for multi-view spectral clustering[C]//Proceedings of the 28th International Conference on Machine Learning, June 28-July 2, 2011, Bellevue, WA, USA. Madison:Omnipress,2011:393-400.

[42] CHUA T S, TANG J H, HONG R C, et al. NUS-WIDE:a real-world web image database from National University of Singapore[C]//Proceedings of the ACM International Conference on Image and Video Retrieval, Santorini, Fira Greece. New York:Association for Computing Machinery,2009:1-9.

[43] HUANG D, WANG C D, LAI J H. Fast multi-view clustering via ensembles:towards scalability, superiority, and simplicity[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(11):11388-11402.

[44] CAI X, NIE F P, HUANG H. Multi-view K-means clustering on big data[C]//Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, August 3-9, 2013, Beijing, China. Menlo Park:AAAI Press,2013:2598-2604.

基本信息:

DOI:10.12194/j.ntu.20250610001

中图分类号:TP391.41

引用信息:

[1]朱成豪,丁卫平,张炜.基于双锚点图的多视图模糊聚类[J].南通大学学报(自然科学版),2025,24(03):64-74.DOI:10.12194/j.ntu.20250610001.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文