南通大学理学院;
研究了混沌Lur′e系统同步的时滞反馈比例-微分(PD)控制器设计问题.系统中的非线性函数假设属于一个既有上界又有下界的扇形,这比相关文献中所使用的假设更具一般性.通过应用自由矩阵积分不等式来估计所构造的Lyapunov-Krasovskii泛函(LKF)的导数,提出了以一组线性矩阵不等式(LMIs)形式给出的同步判据,相应的控制器增益矩阵可以通过求解LMIs来获得,所得判据中不要求构造的LKF泛函中所有对称矩阵都正定.时滞Chua电路的数值仿真验证了该控制方法的有效性.
46 | 4 | 18 |
下载次数 | 被引频次 | 阅读次数 |
[1]PECORA L M,CARROLL T L.Synchronization in chaotic systems[J].Physical Review Letters,1990,64(8):821-824.
[2]MIJMEIJER H.A dynamical control view on synchronization[J].Physica D:Nonlinear Phenomena,2001,154(3/4):219-228.
[3]XIANG J,LI Y J,WEI W.An improved condition for master-slave synchronization of Lur′e systems with time delay[J].Physics Letters A,2007,362(2/3):154-158.
[4]KIM J H,HYUN C Y,KIM E,et al.Adaptive synchronization of uncertain chaotic systems based on T-S fuzzy model[J].IEEE Transactions on Fuzzy Systems,2007,15(3):359-369.
[5]LU J G,HILL D J.Impulsive synchronization of chaotic Lur′e systems by linear static measurement feedback:an LMI approach[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2007,54(8):710-714.
[6]LI D,ZHANG X P.Impulsive synchronization of fractional order chaotic systems with time-delay[J].Neurocomputing,2016,216:39-44.
[7]KUO H H,HOU Y Y,YAN J J,et al.Reliable synchronization of nonlinear chaotic systems[J].Mathematics and Computers in Simulation,2009,79(5):1627-1635.
[8]LEE S H,PARK M J,KWON O M,et al.Master-slave synchronization for nonlinear systems via reliable control with gaussian stochastic process[J].Applied Mathematics and Computation,2016,290:439-459.
[9]ZAHNG C K,HE Y,WU M.Exponential synchronization of neural networks with time-varying mixed delays and sampled-data[J].Neurocomputing,2010,74(1/2/3):265-273.
[10]ZHANG C K,JIANG L,HE Y,et al.Asymptotical synchronization for chaotic Lur′e systems using sampled-data control[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(10):2743-2751.
[11]刘锦梅,邢广霞,高岩波.带有采样数据时滞混沌Lur′e系统的指数同步[J].信息与控制,2016,45(1):32-39.
[12]WU X J,LU H T.Hybrid synchronization of the general delayed and non-delayed complex dynamical networks via pinning control[J].Neurocomputing,2012,89(15):168-177.
[13]TANG Y,FANG J A.General methods for modified projective synchronization of hyperchaotic systems with known or unknown parameters[J].Physics Letters A,2008,372(11):1816-1826.
[14]CAI N,JING Y W,ZHANG S Y.Modified projective synchronization of chaotic systems with disturbances via active sliding mode control[J].Communications in Nonlinear Sci ence and Numerical Simulation,2010,15(6):1613-1620.
[15]GAY Y B,SUN B H,LU G P.Modified function projective lag synchronization of chaotic systems with disturbance estimations[J].Applied Mathematical Modelling,2013,37(7):4993-5000.
[16]YAHYAZADEH M,NOEI A R,GHADERI R.Synchronization of chaotic systems with known and unknown parameters unsing a modified active sliding mode control[J].ISA Transactions,2011,50(2):262-267.
[17]陈志伟,高岩波,陆国平.Duffing混沌系统基于Termi nal滑模控制的投影同步[J].南通大学学报(自然科学版),2013,12(1):24-29.
[18]YANG C C.Synchronization of second-order chaotic systems via adaptive terminal sliding mode control with input nonlinearity[J].Journal of the Franklin Institute,2012,349(6):2019-2032.
[19]刘锦梅,邢广霞,高岩波.二阶混沌系统基于指数终端滑模控制的投影滞后同步[J].南通大学学报(自然科学版),2014,13(2):20-25.
[20]WANG H,HAN Z Z,XIE Q Y,et al.Finite-time chaos control via nonsingular terminal sliding mode control[J].Communications in Nonlinear Science and Numerical Simulation,2009,14(6):2728-2733.
[21]GAO Y B,REN J,ZHAO M.Projective lag synchronization of second-order chaotic systems via modified terminal sliding mode control[J].IMA Journal of Mathematical Control and Information,2017,34(3):1045-1059.
[22]GAO Y B,ZHANG X M,LU G P.Dissipative synchronization of nonlinear chaotic systems under information constraints[J].Information Sciences,2013,225:81-97.
[23]SU L,SHEN H.Fault-tolerant dissipative synchronization for chaotic systems based on fuzzy mixed delayed feedback[J].Neurocomputing,2015,151(Part 3):1407-1413.
[24]ZHAO M,LIU R H,GAO Y B.Dissipative lag synchronization of chaotic Lur′e systems with unknown disturbances[J].IMA Journal of Mathematical Control and Information,2017,34(1):123-138.
[25]CHEN C L,FENG G,GUAN X P.Robust synchronization of chaotic Lur′e systems via delayed feed back control[J].Physics Letters A,2004,321(5/6):344-354.
[26]CAO J D,LI H X,HO D W C.Synchronization criteria of Lur′e systems with time-delay feedback control[J].Chaos,Solitons&Fractals,2005,23(4):1285-1298.
[27]HAN Q L.New delay-dependent synchronization criteria for Lur′e systems using time delay feedback control[J].Physics Letters A,2007,360(4/5):563-569.
[28]HUANG H,FENG G,CAO J D.Exponential synchronizaiton of chaotic Lur′e systems with delayed feedback control[J].Nonlinear Dynamics,2009,57(3):441-453.
[29]LI T,YU J J,WANG Z.Delay-range-dependent synchronizaiton criterion for Lur′e systems with de lay feedback control[J].Communications in Nonlinear Science and Numerical Simulation,2009,14(5):1796-1803.
[30]LEE S M,CHOI S J,JI D H,et al.Synchronization for chaotic Lur′e systems with sector-restricted nonlinearities via delayed feedback control[J].Nonlinear Dynam ics,2010,59:277-288.
[31]HAN Q L.On designing time-varying delay feedback controllers for master-slave synchronization of Lur′e systems[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2007,54(7):1573-1583.
[32]HE Y,WEN G L,WANG Q G.Delay-dependent synchronization criterion for Lur′e systems with delay feedback control[J].International Journal of Bifurcation and Chaos,2006,16(10):3087-3091.
[33]GE C,HUA C C,GUAN X P.Master-slave synchronization criteria of Lur′e systems with time-delayed feedback control[J].Applied Mathematics and Computation,2014,244:895-902.
[34]SHI K B,LIU X Z,ZHU H,et al.Novel delay-dependent master-slave synchronization criteria of chaotic Lur′e systems with time-varying-delay feedback contro[J].Applied Mathematics and Computation,2016,282:137-154.
[35]GUO H M,ZHONG S M,GAO F Y.Design of PD controller for master-slave synchronization of Lur′e systems with time-delay[J].Applied Mathematics and Computa tion,2009,212(1):86-93.
[36]JI D H,PARK J H,LEE S M,et al.Synchronization criterion for Lur′e systems via delayed PD controller[J].Journal of Optimization Theory and Applications,2010,147(2):298-317.
[37]LIU Y J,LEE S M.Synchronization criteria of chaotic Lur′e systems with delayed feedback PD control[J].Neurocom puting,2016,189:66-71.
[38]CARROLL T L,PECORA L M.Synchronizing chaotic circuits[J].IEEE Transactions on Circuits and Systems,1991,38(4):453-456.
[39]YALCIN M E,SUYKENS J A K,VANDEWALLE J.Experimental confirmation of 3-and 5-scroll attractors from a generalized Chau′s circuit[J].IEEE Transactions on Cir cuits and Systems I:Fundamental Theory and Applications,2000,47(3):425-429.
[40]KAPITANIAK T,CHUA L O,ZHONG G Q.Experimental hyperchaos in coupled Chua′s Circuits[J].IEEE Transactions on Circuits and Systems I:Fundamental Throry and Applications,1994,41(7):499-503.
[41]SUYKENS J A K,CYRRAN P F,CHUA L O.Robust synthesis for master-slave synchronization of Lur′e systems[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1999,46(7):841-850.
[42]GU K Q,KHARITONOV V L,CHEN J.Stability of timedelay systems[M].Boston:Birkh覿ser,2003.
[43]SEURET A,GOUAISBAUT F.Wirtinger-based integral inequality:application to time-delay systems[J].Automatica,2013,49(9):2860-2866.
[44]ZENG H B,HE Y,WU M,et al.Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[J].IEEE Transactions on Automatic Control,2015,60(10):2768-2772.
基本信息:
DOI:
中图分类号:O231
引用信息:
[1]严欢,高岩波.混沌Lur′e系统基于时滞反馈PD控制的同步[J].南通大学学报(自然科学版),2017,16(04):12-21.
基金信息:
国家自然科学基金项目(61273103,61573201)