nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 02, v.21;No.81 18-37
碳纳米材料的功能化及其储能应用
基金项目(Foundation): 江苏省自然科学基金项目(BK20210834);; 江苏省高等学校自然科学面上项目(20KJB430046);; 南通市科技项目(JC2021098)
邮箱(Email):
DOI: 10.12194/j.ntu.20200225001
摘要:

在过去的几十年里,功能碳纳米材料(functional carbon nanomaterials,FCMs)由于其优异的理化性质,如超高电导率和质量传输速率、丰富的活性位点、良好的化学稳定性和机械强度,引起了材料科学界的广泛关注。基于FCMs所带来的各向异性和协同效应以及纳米尺度上的小尺寸效应,这些FCMs在锂离子电池、锂硫电池、燃料电池、有机太阳能电池和超级电容器等能源领域表现出巨大的应用价值。这篇综述全面总结了近5年来碳纳米材料的功能化策略,并详细介绍了FCMs在能源存储与转化器件中的应用。最后,根据科学研究的发展趋势,探讨了FCMs所面临的紧迫挑战和未来的研究方向。

Abstract:

Over the past decades, functional carbon nanomaterials(FCMs) have attracted much attention from the materials science community owning to their outstanding physical and chemical properties, such as high electronic conductivity/rapid mass transfer, plentiful active sites, good chemical stability, and robust mechanical stiffness. In view of the anisotropic and synergistic effects stemming from the functionalization as well as small size effect at the nanoscale,these multifunctional FCMs exhibit high potential especially in lithium-ion batteries, sodium-ion batteries, potassiumion batteries, lithium-sulfur batteries, organic solar cells, and supercapacitors. In this review, the functionalization strategies of carbon nanomaterials that have been developed over the last five years are comprehensively summarized and then application of FCMs in energy storage and conversion is introduced exhaustively. Finally, the pressing challenges and research directions are discussed according to the development trend.

参考文献

[1] BENZIGAR M R, TALAPANENI S N, JOSEPH S, et al.Recent advances in functionalized micro and mesoporous carbon materials:synthesis and applications[J]. Chemical Society Reviews, 2018, 47(8):2680-2721.

[2] KONG D B, GAO Y, XIAO Z C, et al. Rational design of carbon-rich materials for energy storage and conversion[J].Advanced Materials, 2019, 31(45):e1804973.

[3]仲启凤.多孔结构碳材料的制备及功能研究[D].南京:东南大学,2016.ZHONG Q F. Fabrication and application of porous carbon[D]. Nanjing:Southeast University, 2016.(in Chinese)

[4] CHEN M F, XU W T, JAMIL S, et al. Multifunctional heterostructures for polysulfide suppression in high-performance lithium-sulfur cathode[J]. Small, 2018, 14(49):e1803134.

[5]李冕.多孔碳材料的结构调控、功能化及电催化应用研究[D].长春:东北师范大学,2017.LI M. Structural control, surface functionalization and electrocatalytic application of porous carbons[D]. Changchun:Northeast Normal University, 2017.(in Chinese)

[6] ZHANG H, LIU X M, WU Y, et al. MOF-derived nanohybrids for electrocatalysis and energy storage:current status and perspectives[J]. Chemical Communications, 2018, 54(42):5268-5288.

[7] GEIM A K, NOV OSELOV K S. The rise of graphene[J].Nature Materials, 2007, 6(3):183-191.

[8] KROTO H W, HEATH J R, O′BRIEN S C, et al. C60:buckminsterfullerene[J]. Nature, 1985, 318(6042):162-163.

[9] UGARTE D. Curling and closure of graphitic networks under electron-beam irradiation[J]. Nature, 1992, 359(6397):707-709.

[10] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430):603-605.

[11] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.

[12]钱华玉.功能化纳米碳基复合材料的设计、制备及电催化性能研究[D].南京:南京理工大学,2017.QIAN H Y. Design, synthesis of functionalized nanocarbon-based composites and their electrochemical catalytic performance[D]. Nanjing:Nanjing University of Science and Technology, 2017.(in Chinese)

[13]弭侃.功能化碳材料的设计、制备及其在锂硫电池中的应用[D].济南:山东大学,2017.MI K. Functional carbon materials:design, preparation and their application for lithium-sulfur batteries[D]. Jinan:Shandong University, 2017.(in Chinese)

[14] PARAKNOWITSCH J P, THOMAS A. Doping carbons beyond nitrogen:an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy&Environmental Science, 2013, 6(10):2839-2855.

[15] ZHU H, YIN J, WANG X L, et al. Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors[J]. Advanced Functional Materials, 2013, 23(10):1305-1312.

[16] CHEN L F, HUANG Z H, LIANG H W, et al. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors[J]. Advanced Functional Materials, 2014, 24(32):5104-5111.

[17] KIM D W, LI O L, SAITO N. Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials[J]. Physical Chemistry Chemical Physics, 2015, 17(1):407-413.

[18] ZHAO Y Q, LU M, TAO P Y, et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors[J]. Journal of Power Sources, 2016,307:391-400.

[19] WU J X, PAN Z Y, ZHANG Y, et al. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries[J]. Journal of Materials Chemistry A, 2018, 6(27):12932-12944.

[20] YANG M, ZHOU Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials[J].Advanced Science, 2017, 4(8):1600408.

[21] TANG J, LIU J, SALUNKHE R R, et al. Nitrogen-doped hollow carbon spheres with large mesoporous shells engineered from diblock copolymer micelles[J]. Chemical Communications, 2016, 52(3):505-508.

[22] TANG J, WANG J, SHRETSHA L K, et al. Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor[J]. ACS Applied Materials&Interfaces, 2017, 9(22):18986-18993.

[23] WANG B W, WANG X X, ZOU J X, et al. Simple-cubic carbon frameworks with atomically dis persed iron dopants toward high-efficiency oxygen reduction[J]. Nano Letters,2017, 17(3):2003-2009.

[24] LU H J, LI Y, ZHANG L Q, et al. Synthesis of B-doped hollow carbon spheres as efficient non-metal catalyst for oxygen reduction reaction[J]. RSC Advances, 2015, 5(64):52126-52131.

[25] WU J, JIN C, YANG Z R, et al. Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction[J]. Carbon, 2015,82:562-571.

[26] ZHOU T S, ZHOU Y, MA R G, et al. Ni trogen-doped hollow mesoporous carbon spheres as a highly active and stable metal-free electrocatalyst for oxygen reduction[J].Carbon, 2017, 114:177-186.

[27] CAI T H, XING W, LIU Z, et al. Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres[J]. Carbon, 2015, 86:235-244.

[28] LI Q, ZHU H, TANG Y F, et al. Chemically grafting nanoscale UIO-66 onto polystyrene nanotubes for longlifelithium-sulfur batteries[J]. Chemical Communications,2019, 55(80):12108-12111.

[29] RANGEL-MENDEZ J R, STREAT M. Adsorption of cadmium by activated carbon cloth:influence of surface oxidation and solution pH[J]. Water Research, 2002, 36(5):1244-1252.

[30] MORENO-CASTILLA C, LóPEZ-RAMóN M V, CARRASCO-MAR魱N F. Changes in surface chemistry of activated carbons by wet oxidation[J]. Carbon, 2000, 38(14):1995-2001.

[31] CHINGOMBE P, SAHA B, WAKEMAN R J. Surface modification and characterisation of a coal-based activated carbon[J]. Carbon, 2005, 43(15):3132-3143.

[32] HUMMERS W S Jr, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.

[33] MCALLISTER M J, LI J L, ADAMSON D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials, 2007, 19(18):4396-4404.

[34] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al.Improved synthesis of graphene oxide[J]. ACS Nano, 2010,4(8):4806-4814.

[35] ZHANG J, LIU X, BLUME R, et al. Sur face-modified carbon nanotubes catalyze oxidative dehydrogenation of nbutane[J]. Science, 2008, 322(5898):73-77.

[36] XING Y C, LI L, CHUSUEI C C, et al. Sonochemical oxidation of multiwalled carbon nanotubes[J]. Langmuir,2005, 21(9):4185-4190.

[37] DATSYUK V, KALYVA M, PAPAGELIS K, et al. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon,2008, 46(6):833-840.

[38] ZHANG G X, SUN S H, YANG D Q, et al. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3treatment[J]. Carbon, 2008, 46(2):196-205.

[39] ROS T G, VAN DILLEN A J, GEUS J W, et al. Surface oxidation of carbon nanofibres[J]. Chemistry(A European Journal), 2002, 8(5):1151-1162.

[40] LEE H Y, LEE S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2004,6(5):465-469.

[41] JOERGER R, KLAUS T, GRANQVIST C G. Biologically produced silver-carbon composite materials for optically functional thin-film coatings[J]. Advanced Materials, 2000,12(6):407-409.

[42] XIE X F, GAO L. Characterization of a manganese dioxide/carbon nanotube composite fabri cated using an in situ coating method[J]. Carbon, 2007, 45(12):2365-2373.

[43] HERNADI K, LJUBOVIC E, SEO J W, et al. Synthesis of MWNT-based composite materials with inorganic coating[J]. ActaMaterialia, 2003, 51(5):1447-1452.

[44] SMEACETTO F, FERRARIS M, SALVO M. Multilayer coating with self-sealing properties for carbon-carbon composites[J]. Carbon, 2003, 41(11):2105-2111.

[45] WESTWOOD M E, WEBSTER J D, DAY R J, et al. Oxidation protection for carbon fibre composites[J]. Journal of Materials Science, 1996, 31(6):1389-1397.

[46] LIU Y L, CHEN F J, YE W, et al. High-performance oxygen reduction electrocatalyst derived from polydopamine and cobalt supported on carbon nanotubes for metal-air batteries[J]. Advanced Functional Materials, 2017, 27(12):1606034.

[47] KIM K H, OH Y, ISLAM M F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue[J]. Nature Nanotechnology, 2012, 7(9):562-566.

[48] HUANG S C, MENG Y Y, HE S M, et al. N-, O-, and S-tridoped carbon-encapsulated Co9S8nanomaterials:efficient bifunctionalelectrocatalysts for overall water splitting[J]. Advanced Functional Materials, 2017, 27(17):1606585.

[49] KIM S Y, JEONG H M, KWON J H, et al. Nickel oxide encapsulated nitrogen-rich carbon hollow spheres with multiporosity for high-performance pseudocapacitors having extremely robust cycle life[J]. Energy&Environmental Science, 2015, 8(1):188-194.

[50] MAO C P, LIU S G, PANG L, et al. Ultrathin MnO2nanosheets grown on fungal conidium-derived hollow carbon spheres as supercapacitor electrodes[J]. RSC Advances,2016, 6(7):5184-5191.

[51] GALEANO C, MEIER J C, SOORHOLTZ M, et al. Nitrogen-doped hollow carbon spheres as a support for platinum-based electrocatalysts[J]. ACS Catalysis, 2014, 4(11):3856-3868.

[52] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17):10397-10401.

[53] CAO S W, YU J G. g-C3N4-based photocatalysts for hydrogen generation[J]. The Journal of Physical Chemistry Letters, 2014, 5(12):2101-2107.

[54] GROENEWOLT M, ANTONIETTI M. Synthesis of g-C3N4nanoparticles in mesoporous silica host matrices[J]. Advanced Materials, 2005, 17(14):1789-1792.

[55] WEN J Q, XIE J, CHEN X B, et al. A review on g-C3N4-based photocatalysts[J]. Applied SurfaceScience, 2017,391:72-123.

[56] FU J W, YU J G, JIANG C J, et al. g-C3N4-Based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3):1701503.

[57] ONG W J, TAN L L, CHAI S P, et al. Surface charge modification via protonation of graphitic carbon nitride(gC3N4)for electrostatic self-assembly construction of 2D/2D reduced graphene oxide(rGO)/g-C3N4nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane[J]. Nano Energy, 2015, 13:757-770.

[58] LU A H, SUN T, LI W C, et al. Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace py rolysis[J]. AngewandteChemie(International Edition), 2011, 50(49):11765-11768.

[59] LIU R, MAHURIN S M, LI C, et al. Dopamine as a carbon source:the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites[J]. Angewandte Chemie(International Edition), 2011, 50(30):6799-6802.

[60] FENG S S, LI W, SHI Q, et al. Synthesis of nitrogendoped hollow carbon nanospheres for CO2capture[J].Chemical Communications, 2014, 50(3):329-331.

[61] TANG J, LIU J, LI C L, et al. Synthesis of nitrogendoped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angewandte Chemie, 2015, 127(2):598-603.

[62] WANG H, MIN S X, MA C, et al. Synthe sis of singlecrystal-like nanoporous carbon membranes and their application in overall water splitting[J]. Nature Communications,2017, 8:13592.

[63] SEVILLA M, FUERTES A B. The production of carbon materials by hydrothermal carbonization of cellulose[J].Carbon, 2009, 47(9):2281-2289.

[64] ZHOU J, DOU Y B, ZHOU A W, et al. MOF templatedirected fabrication of hierarchically structured electrocatalysts for efficient oxygen evolu tion reaction[J]. Advanced Energy Materials, 2017, 7(12):1602643.

[65] YOU B, JIANG N, SHENG M L, et al. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction[J].ACS Catalysis, 2015, 5(12):7068-7076.

[66] YE L, CHAI G L, WEN Z H. Zn-MOF-74 derived Ndoped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction[J]. Advanced Functional Materials, 2017, 27(14):1606190.

[67] GAO Z H, SUN H B, FU L, et al. Promises, challenges,and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials,2018, 30(17):e1705702.

[68] LIN J, XU Y L, WANG J, et al. Preinserted Li metal porous carbon nanotubes with high Coulombic efficiency for lithium-ion battery anodes[J]. Chemical Engineering Journal, 2019, 373:78-85.

[69] HE D F, YANG Y, LIU Z M, et al. Solvothermal-assisted assembly of Mo S2nanocages on graphene sheets to enhance the electrochemical performance of lithium-ion battery[J]. Nano Research, 2020, 13(4):1029-1034.

[70] ZHANG X E, ZHAO R F, WU Q H, et al. Petal-like MoS2nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance[J].ACS Nano, 2017, 11(8):8429-8436.

[71] KUMAR R, LIU J, HWANG J Y, et al. Recent research trends in Li-S batteries[J]. Journal of Materials Chemistry A, 2018, 6(25):11582-11605.

[72] ZHANG L L, WANG Y J, NIU Z Q, et al. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries[J]. Carbon, 2019, 141:400-416.

[73] ZHANG X Q, ZHONG Y, XIA X H, et al. Metal-embedded porous graphitic carbon fibers fabricated from bamboo sticks as a novel cathode for lithium-sulfur batteries[J].ACS Applied Materials&Interfaces, 2018, 10(16):13598-13605.

[74] LIANG S, XIA Y, LIANG C, et al. A green and facile strategy for the low-temperature and rapid synthesis of Li2S@PC-CNT cathodes with high Li2S content for advanced Li-S batteries[J]. Journal of Materials Chemistry A,2018, 6(21):9906-9914.

[75] CHEN K, SUN Z H, FANG R P, et al. Metal-organic frameworks(MOFs)-derived nitrogen-doped porous carbon anchored on graphene with mul tifunctional effects for lithium-sulfur batteries[J]. Advanced Functional Materials,2018, 28(38):1707592.

[76] KARUPPANNAN M, PARK J E, BAE H E, et al. A nitrogen and fluorine enriched Fe/Fe3C@C oxygen reduction reaction electrocatalyst for anion/proton exchange membrane fuel cells[J]. Nanoscale, 2020, 12(4):2542-2554.

[77] LIANG Y, ZHANG H C, ZHANG J, et al. Porous 2D carbon nanosheets synthesized via organic groups triggered polymer particles exfoliation:an effective cathode catalyst for polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2020, 332:135397.

[78] CAO H H, CAO J D, WANG F H, et al. A mesoporous carbon-based catalyst derived from cobalt and boron Codoped melamine formaldehyde gel for oxygen reduction reaction[J]. Electrochimica Acta, 2020, 333:135560.

[79] AHN S H, MANTHIRAM A. Cobalt phosphide coupled with heteroatom-doped nanocarbon hybrid electroctalysts for efficient, long-life rechargeable zinc-air batteries[J].Small, 2017, 13(40):1702068.

[80] WANG C Y, XIE N H, ZHANG Y L, et al. Silk-derived highly active oxygen electrocatalysts for flexible and rechargeable Zn-air batteries[J]. Chemistry of Materials,2019, 31(3):1023-1029.

[81] CHEN X, LIU B, ZHONG C, et al. Ultrathin Co3O4layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display[J]. Advanced Energy Materials, 2017, 7(18):1700779.

[82] LAI Q X, ZHU J J, ZHAO Y X, et al. MOF-based metaldoping-induced synthesis of hierarchical porous Cu-N/C oxygen reduction electrocatalysts for Zn-air batteries[J].Small, 2017, 13(30):1700740.

[83] NIU Z Y, ZHANG Y, ZHANG Y, et al. Enhanced electrochemical performance of three-dimensional graphene/carbon nanotube composite for supercapacitor application[J]. Journal of Alloys and Compounds, 2020, 820:153114.

[84] CHEN L F, LU Y, YU L, et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J]. Energy&Environmental Science, 2017, 10(8):1777-1783.

[85] LIU M X, WANG X, ZHU D Z, et al. Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage[J]. Chemical Engineering Journal,2017, 308:240-247.

[86] TIAN C B, CHEN M M, TIAN H R, et al. Tuning the molecular packing and energy levels of fullerene acceptors for polymer solar cells[J]. Journal of Materials Chemistry C,2019, 7(40):12688-12694.

[87] HUANG W C, JIANG Z, FUKUDA K, et al. Efficient and mechanically robust ultraflexible organic solar cells based on mixed acceptors[J]. Joule, 2020, 4(1):128-141.

基本信息:

DOI:10.12194/j.ntu.20200225001

中图分类号:TM91;TM53;TB383.1;TQ127.11

引用信息:

[1]李奇,秦天,葛存旺.碳纳米材料的功能化及其储能应用[J],2022,21(02):18-37.DOI:10.12194/j.ntu.20200225001.

基金信息:

江苏省自然科学基金项目(BK20210834);; 江苏省高等学校自然科学面上项目(20KJB430046);; 南通市科技项目(JC2021098)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文