126 | 0 | 136 |
下载次数 | 被引频次 | 阅读次数 |
文章设计了一款基于氮化镓(GaN)的微机械谐振器。该器件采用氮化镓具有较高的声速和优异的压电系数性质及其二维电子气(two-dimensional electron gas,2DEG)作为可开关嵌入电极,通过压电材料薄膜内正交应力(σx和σy)产生厚度剪切振动模式实现增强器件振荡特性;采用平面和微机械工艺进行流片,详细说明了器件工艺过程,特别是肖特基和欧姆接触工艺,得到了尺寸为70μm×100μm谐振单元物理。该器件由电极、压电薄膜、电极组成高迁移率晶体管(high electron mobility transition,HEMT)结构,使得谐振器增加了机电共振效果。测试结果表明器件的谐振频率为26.3 MHz,品质因数为2 620。通过实验对器件施加不同的栅极电压,在AlGaN/GaN界面上由于自发极化和压电极化而能够产生较大电荷密度和较高速的电子迁移率的二维电子气层。实验结果表明:HEMT的栅极电压引起的沟道的2DEG对谐振器的机电转换特性具有一定的影响,提高了谐振器的性能。该研究对于谐振器的研制具有一定的指导意义。
Abstract:A micromechanical resonator based on gallium nitride(GaN) is presented. The resonator is made by applying the high sound velocity and excellent piezoelectric coefficient of gallium nitride. The two-dimensional electron gas(2DEG) is used as a switchable embedded electrode, through the normal stress in the piezoelectric material film(σx and σy), the thickness shear vibration mode is produced to fortify the oscillation characteristics. The high electron mobility transition(HEMT) structure of the device is composed of electrode, piezoelectric film and electrode, and can increase the electromechanical resonance effect of the resonator. The test results show that the resonant frequency of the device is 26.3 MHz with the quality factor of 2 620. By applying different gate voltages to the device, the 2DEG layer with large charge density and high electron mobility form at the AlGaN/GaN interface due to spontaneous polarization and piezoelectric polarization. In addition, the experimental results also illustrate that the channel 2DEG caused by the gate voltage of HEMT has a certain impact on the electromechanical conversion characteristics of the resonator and thus improves the resonator′s performance. This study has instructive significance in micromechanical resonator development.
[1] LI Z Q, LIU J H, LONG Y L. A quasi-magnetic-electric circularly polarized antenna with wide bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10):2145-2149.
[2] ZHANG C G, XIE Y J, WANG Y J, et al. Novel miniaturized all-metal UWB magneto-electric monopole(MEM)antenna for multistandard applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(7):4195-4200.
[3] BAHL I J, BHARTIA P. Microstrip antennas[M]. London:Artech House, 1980:125-126.
[4] REBEIZ G M. RF MEMS:theory, design and technology[M]. New York:Wiley-Interscience, 2003:289-293.
[5] KHAIRA N K, SINGH T, MANSOUR R R. Monolithically integrated RF MEMS-based variable attenuator for millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(8):3251-3259.
[6] MCCORQUODALE M S, O'DAY J D, PERNIA S M, et al. A monolithic and self-referenced RF LC clock generator compliant with USB 2.0[J]. IEEE Journal of Solid-State Circuits, 2007, 42(2):385-399.
[7] MCCORQUODALE M S, CARICHNER G A, O′DAY J D,et al. A 25-MHz self-referenced solid-state frequency source suitable for XO-replacement[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2009, 56(5):943-956.
[8] D魪VELOPPEMENT Y. Status of the MEMS industry[R/OL].(2019-06-01)[2021-10-20]. https://s3.i-micronews.com/uploads/2019/06/YD19031_status_of_the_MEMS_industry_2019_Sample_Yole_Developpement.pdf.
[9] HAN Z J, SONG W, SHENG X Q. Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16:1631-1634.
[10] KOLEDINTSEVA M Y, RADU S, NUEBEL J. Design and sensitivity analysis of EBG stripline common-mode filters[J]. IEEE Transactions on Electromagnetic Compatibility,2019, 61(6):1746-1759.
[11] GONG S B, PIAZZA G. Monolithic multi-frequency wideband RF filters using two-port laterally vibrating lithium niobate MEMS resonators[J]. Journal of Microelectromechanical Systems, 2014, 23(5):1188-1197.
[12] EMADI T A, BUCHANAN D A. Design and fabrication of a novel MEMS capacitive transducer with multiple moving membrane, M3-CMUT[J]. IEEE Transactions on Electron Devices, 2014, 61(3):890-896.
[13]王喆垚.微系统设计与制造[M]. 2版.北京:清华大学出版社,2015.
[14] COMENENCIA O L, KWON H K, RODRIGUEZ J, et al.Low-power dual mode MEMS resonators with PPB stability over temperature[J]. Journal of Microelectromechanical Systems, 2020, 29(2):190-201.
[15] KWON H K, VUKASIN G D, BOUSSE N E, et al. Crystal orientation dependent dual frequency ovenized MEMS resonator with temperature stability and shock robustness[J]. Journal of Microelectromechanical Systems, 2020, 29(5):1130-1131.
[16] NAING T L, ROCHELEAU T O, ALON E, et al. Lowpower MEMS-based pierce oscillator using a 61-MHz capacitive-gap disk resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020,67(7):1377-1391.
[17] CARUNTU D I, BOTELLO M A, REYES C A, et al. Frequency-amplitude response of superharmonic resonance of second order of electrostatically actuated MEMS cantilever resonators[J]. International Journal of Non-Linear Mechanics, 2021, 133:103719.
[18] QAMAR A, JAFARI M, RAIS-ZADEH M. Solidly mounted anti-symmetric lamb-wave delay lines as an alternate to SAW devices[J]. IEEE Electron Device Letters, 2018,39(12):1916-1919.
[19] EVERTS J, DAS J, VAN DEN KEYBUS J, et al. A highefficiency, high-frequency boost converter using enhancement mode GaN DHFETs on silicon[C]//Proceedings of the2010 IEEE Energy Conversion Congress and Exposition,September 12-16, 2010, Atlanta, GA, USA. New York:IEEE Xplore, 2010:3296-3302.
[20] SEMOND F, LORENZINI P, GRANDJEAN N, et al.High-electron-mobility AlGaN/GaN heterostructures grown on Si(111)by molecular-beam epitaxy[J]. Applied Physics Letters, 2001, 78(3):335-337.
[21] PEDROS J, CUERDO R, CALLE F, et al. 6C-3 fieldeffect-modulated SAW devices on AlGaN/GaN heterostructures[C]//Proceedings of the 2006 IEEE Ultrasonics Symposium, October 2-6, 2006, Vancouver, BC, Canada. New York:IEEE Xplore, 2006:273-276.
[22] PALACIOS T, CALLE F, MONROY E, et al. Nanotechnology for SAW devices on AlN epilayers[J]. Materials Science and Engineering:B, 2002, 93(1/2/3):154-158.
[23] RAIS-ZADEH M, GOKHALE V J, ANSARI A, et al.Gallium nitride as an electromechanical material[J]. Journal of Microelectromechanical Systems, 2014, 23(6):1252-1271.
[24] MEDJDOUB F, MARCON D, DAS J, et al. GaN-on-Si HEMTs above 10 W/mm at 2 GHz together with high thermal stability at 325℃[C]//Proceedings of the 5th European Microwave Integrated Circuits Conference, September27-28, 2010, Paris, France. New York:IEEE Xplore,2010:37-40.
[25] CIMALLA V, NIEBELSCHüTZ F, TONISCH K, et al.Nanoelectromechanical devices for sensing applications[J].Sensors and Actuators B:Chemical, 2007, 126(1):24-34.
[26] DABIRAN A M, WOWCHAK A M, OSINSKY A, et al.Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures[J]. Applied Physics Letters, 2008, 93(8):082111.
[27] ABDOLVAND R, BAHREYNI B, LEE J E Y, et al. Micromachined resonators:a review[J]. Micromachines, 2016,7(9):160.
[28] CHEN C Y, LI M H, LI S S. CMOS-MEMS resonators and oscillators:a review[J]. Sensors and Materials, 2018,30(4):733-756.
[29] WU G Q, XU D H, XIONG B, et al. A high-performance bulk mode single crystal silicon microresonator based on a cavity-SOI wafer[J]. Journal of Micromechanics and Microengineering, 2012, 22(2):025020.
[30] WU G Q, XU D H, XIONG B, et al. Wafer-level vacuum packaging for MEMS resonators using glass frit bonding[J].Journal of Microelectromechanical Systems, 2012, 21(6):1484-1491.
[31] QAMAR A, RAIS-ZADEH M. Coupled BAW/SAW resonators using AlN/Mo/Si and AlN/Mo/GaN layered structures[J]. IEEE Electron Device Letters, 2019, 40(2):321-324.
[32] JI X, DONG W X, ZHANG Y M, et al. Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates[J]. Chinese Physics, B, 2019, 28(6):067701.
[33] POPA L C, WEINSTEIN D. L-band lamb mode resonators in gallium nitride MMIC technology[C]//Proceedings of the2014 IEEE International Frequency Control Symposium,May 19-22, 2014, Taipei, Taiwan, China. New York:IEEE Xpore, 2014:1-4.
[34] SARZA?A R P, S PIEWAK P, WASIAK M. Influence of resonator length on performance of nitride TJ VCSEL[J].IEEE Journal of Quantum Electronics, 2019, 55(6):2400509.
[35] H魻RBERG M, EMANUELSSON T, LIGANDER P, et al.RF-MEMS tuned GaN HEMT based cavity oscillator for X-band[J]. IEEE Mi crowave and Wireless Components Letters, 2017, 27(1):46-48.
[36] WUNDERER T, JESCHKE J, YANG Z H, et al. Resonator-length dependence of electron-beam-pumped UVA GaN-based lasers[J]. IEEE Photonics Technology Letters, 2017, 29(16):1344-1347.
[37] AMBACHER O, EICKHOFF M, LINK A, et al. Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures part a:polarization and pyroelectronics[J].Physica Status Solidi(C), 2003(6):1878-1907.
[38] CIMALLA V, PEZOLDT J, AMBACHER O. GroupⅢnitride and SiC based MEMS and NEMS:materials properties, technology and applications[J]. Journal of Physics D:Applied Physics, 2007, 40(20):6386-6434.
基本信息:
DOI:10.12194/j.ntu.20211130001
中图分类号:TN386;TN751.2
引用信息:
[1]郭兴龙,朱友华,葛梅等.基于高迁移率晶体管的氮化镓微机械谐振器[J],2022,21(02):65-72.DOI:10.12194/j.ntu.20211130001.
基金信息:
国家自然科学基金面上项目(62074086,61874168);国家自然科学基金青年科学基金项目(62004109);; 江苏省产学研项目(21ZH626)