34 | 0 | 19 |
下载次数 | 被引频次 | 阅读次数 |
研究了一类p-Laplace发展方程u t=div(Δu p-2Δu)+aurΩ乙uq(x,t)dx在一个有界域Ω奂RN(N>2)解的存在性,其中Δp u=div(Δu p-2Δu),p>1,r,q>0.证明了当r,q≥1时,方程的解唯一存在;而在r<1或者q<1时局部解存在,但唯一性未必成立.
Abstract:This paper studies the existence and uniqueness of solutions for a class of p-Laplace evolution equation u t= div(Δu p- 2 Δu) + aurΩ乙uq(x, t)dx in a bounded domain Ω奂RN with N > 2, where Δp u = div(Δu p- 2 Δu)with p > 1, and r, q > 0. It is shown that the local solution exists and if r, q ≥ 1, the solution is unique and if r, q< 1, the uniqueness doesn't always hold.
[1]Zhao Junning.Existence and nonexistence of solution for u t=div(Δup-2Δu)+f(Δu,u,x,t)[J].J Math Anal Appl,1993,172(2):130-146.
[2]Wei Yingjie,Gao Wenjie.Existence and uniqueness of local solution to a class of quasilinear degenerate parabolic systems[J].Applied Mathematics and Computation,2007,190(2):1250-1257.
[3]Chen Yujuan.Wang Mingxin.Boundary blow-up solutions for p-Laplacian elliptic equationa of Logistic type[J].Proc Royal Soc Edingburg,2012,142(4):691-714.
[4]陈莉,陈玉娟.非局部反应扩散方程的一致爆破行为[J].南通大学学报:自然科学版.2011,10(2):90-94.
[5]Wang Mingxin,Wang Yuanming.Properties of positive solution for non-local reaction-diffusion problems[J].Math Meth Appl Sci,1996,19(14):1141-1156.
[6]陈玉娟.非局部的退化抛物型方程组的解的爆破和整体存在性[J].数学物理学报,2006,26A(5):731-740.
[7]Dibenedetto E.Degenerate parapolic equations[M].New York:Springer,1993.
[8]Wu Zhuoqun,Yin Jingxue,Li Huilai,et al.Nonlinear diffu-sion equation[M].Singapore:World Scientific,2001.
[9]Li Fucai,Xie Chunhong.Global and blow-up solution to a p-Laplacian equation with nonlocal source[J].Comp Math Appl,2003,46(10/11):1525-1533.
[10]Chadam J M,Yin Hongming.A diffusion equation with localized chemical reactions[J].Proc Edinb Math Soc,1993,37:101-108.
[11]Oretoleva P,Ross J.Local structures in chemical reactions with heterogeneous catalysis[J].J Chem Phys,1972,56(9):4397-4400.
[12]Souplet P.Blow-up in nonlocal reaction-diffusion equations[J].SIAM J Math Anal,1998,29(6):1301-1334.
[13]Diaz J I.Nonlinear partial differential equations and free boundaries:elliptic equations[M].London:Longman Higer Education,1985.
[14]Damascelli L.Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[J].Ann Inst H Poincare Anal NonLineaire,1998,15(4):493-516.
[15]Coddington E A,Levinson N.Theory of ordinary differential equations[M].New York:MrGraw-Hill,1995.
基本信息:
DOI:
中图分类号:O175
引用信息:
[1]张海星,陈玉娟,史金鑫.一类p-Laplace发展方程解的存在性[J],2013,12(03):70-77.
基金信息:
国家自然科学基金项目(11271209);; 江苏省教育厅自然科学面上项目(12KJB110018);; 江苏省2013年出国留学奖学金项目;; 江苏省高等学校大学生实践创新训练计划项目(2012JSSPITP1493)