63 | 0 | 25 |
下载次数 | 被引频次 | 阅读次数 |
利用局部分析的方法,通过非正规子群的共轭和Sylow子群的个数来探索有限群的存在性,对于特殊结构的群给出了分类。给出当是p的线性关系时群的结构:1)若q=3,则p=2,且■;2)若q=5,则p=2,k=2,且■;3)若q=7,则p=2,k=3,且■;4)若q=7,则p=3,k=2,且■。
Abstract:Apply the local analysis method, the existence of group is discussed through the conjugacy classes of non-normal subgroups and the numbers of Sylow subgroups, and the classification of groups for the special structure is obtained. is given as the group structure of the linear relation of p : 1) if q = 3,then p = 2, and ■; 2) if q = 5,then p = 2, k = 2, and ■; 3) if q = 7,then p = 2, k = 3, and ■; 4) if q = 7,then p = 3, k = 2, and ■.
[1]陈顺民,陈贵云.非正规子群共轭类类数为2的有限群的一个注记[J].吉林大学学报(理学版),2008,46(6):1097-1100.
[2]陈顺民.子群的几类性质对有限群结构的影响[D].西安:陕西师范大学,2009.
[3]毛月梅,曲海鹏.恰有p个相互共轭的不正规子群的有限群[J].山西师范大学学报(自然科学版),2008,22(3):8-10.
[4] GONG L, CAO H P,CHEN G Y. Finite nilpotent groups having exactly four conjugacy classes of non-normal subgroups[J].Algebra Colloquium, 2013,20(4):579-592.
[5]褚智伟,龚律.恰有4个非正规子群的有限群[J].南通大学学报(自然科学版),2014,13(2):76-78.
[6] SHI H G,CHEN G Y. A theorem of finite groups having only two non-normal subgroups[J]. International Journal of Pure and Applied Mathematics, 2008, 23(1):173-178.
[7]石化国,陈贵云.恰有5个非正规子群的有限群[J].山西大学学报(自然科学版),2008,31(1):22-23.
[8]龚律,曹洪平.恰有7个非正规子群的有限群[J].西南大学学报(自然科学版),2010,35(2):104-108.
[9]龚律,褚智伟.恰有6个非正规子群的有限群[J].西南师范大学学报(自然科学版),2015, 40(12):7-11.
[10]褚智伟,龚律.有限NN-群中的非正规子群[J].西南师范大学学报(自然科学版),2017, 42(10):5-8.
[11] BRANDL R. Groups with few non-normal subgroups[J].Communications in Algebra, 1995,23(6):2091-2098.
[12] MOUSAVI H. On finite groups with few non-normal subgroups[J]. Communications in Algebra,1999,27(7):3143-3151.
基本信息:
DOI:
中图分类号:O152.1
引用信息:
[1]褚智伟.非正规子群是Sylow子群的有限群[J],2019,18(02):87-90.
基金信息:
国家自然科学基金项目(11526114)