nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 01, v.21;No.80 14-24
类黑磷锑烯的研究进展
基金项目(Foundation): 国家自然科学基金面上项目(21776140);国家自然科学基金青年科学基金项目(61805147)
邮箱(Email):
DOI: 10.12194/j.ntu.20200429001
摘要:

近年来,层状黑磷纳米结构由于其优异的光电子特性,已在晶体管、光电和逻辑器件应用中显示出巨大潜力。然而,黑磷的高成本及其在自然环境中的快速降解这两个关键问题严重限制了其实际应用。随着半导体的飞跃发展,类黑磷材料因为其优异的光电性能和高化学稳定性为实际应用揭开了广阔的前景。文章详细阐述了新兴类黑磷锑烯纳米材料合成和形貌控制的最新进展,以及构建基于黑磷锑烯纳米材料高性能器件的最新进展,总结了最新研究成果并对黑磷锑烯纳米材料未来研究的前景进行了展望。

Abstract:

In recent years, layered black phosphorus (BP) nanostructures have demonstrated great potential application in transistors, optoelectronics and logic devices due to their excellent intrinsic electronic and optoelectronic properties.However, the high cost of BP and its rapid degradation under ambient conditions turn out to be the two critical bottlenecks, which limit its practical applications. With the development of semiconductors in leaps and bounds, a new wave of exploration of black phosphorus analogue (BPA) antimonene unveils a great promise for the applications owing to the excellent optoelectronic performance and high chemical stability. This review systematically presents the synthesis and morphology control of emerging BPA antimonene, and the recent advances in constructing high-performance BPA antimonene-based devices. Moreover, the latest research on the emerging BPA antimonene is summarized and the prospects for future research are listed.

参考文献

[1] LIU H, NEAL A T, ZHU Z, et al. Phosphorene:an unexplored 2D semiconductor with a high hole mobility[J].ACS Nano, 2014, 8(4):4033-4041.

[2] LI L K, YU Y J, YE G J, et al. Black phosphorus fieldeffect transistors[J]. Nature Nanotechnology, 2014, 9(5):372-377.

[3] GUO Z N, ZHANG H, LU S B, et al. From black phosphorus to phosphorene:basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics[J]. Advanced Functional Materials, 2015, 25(45):6996-7002.

[4] SUN Z, XIE H, TANG S, et al. Ultrasmall black phosphorus quantum dots:synthesis and use as photothermal agents[J]. Angewandte Chemie, 2015, 54(39):11526-11530.

[5] ZHANG X, XIE H M, LIU Z D, et al. Black phosphorus quantum dots[J]. Angewandte Chemie International Edition, 2015, 54(12):3653-3657.

[6] KOU L Z, FRAUENHEIM T, CHEN C F. Phosphorene as a superior gas sensor:selective adsorption and distinct I-V response[J]. The Journal of Physical Chemistry Letters,2014, 5(15):2675-2681.

[7] ZHOU Y, ZHANG M X, GUO Z N, et al. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices[J]. Materials Horizons, 2017, 4(6):997-1019.

[8] ZHAO Y T, WANG H Y, HUANG H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Chemie International Edition, 2016,55(16):5003-5007.

[9] WANG G X, SLOUGH W J, PANDEY R, et al. Degradation of phosphorene in air:understanding at atomic level[J].2D Materials, 2016, 3(2):025011.

[10] FAVRON A, GAUFRèS E, FOSSARD F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8):826-832.

[11] HUANG W C, LI C, GAO L F, et al. Emerging black phosphorus analogue nanomaterials for high-performance device applications[J]. Journal of Materials Chemistry C,2020, 8(4):1172-1197.

[12] ZHANG S L, YAN Z, LI Y F, et al. Atomically thin arsenene and antimonene:semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angewandte Chemie International Edition, 2015, 54(10):3112-3115.

[13] ZHANG S L, XIE M Q, LI F Y, et al. Semiconducting group 15 monolayers:a broad range of band gaps and high carrier mobilities[J]. Angewandte Chemie International Edition, 2016, 55(5):1666-1669.

[14] WANG X X, HU Y, MO J B, et al. Arsenene:a potential therapeutic agent for acute promyelocytic leukaemia cells by acting on nuclear proteins[J]. Angewandte Chemie International Edition, 2020, 59(13):5151-5158.

[15] HU Y, QI Z H, LU J Y, et al. Van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes[J]. Chemistry of Materials, 2019, 31(12):4524-4535.

[16] QI Z H, HU Y, JIN Z, et al. Tuning the liquid-phase exfoliation of arsenic nanosheets by in teraction with various solvents[J]. Physical Chemistry Chemical Physics, 2019,21(23):12087-12090.

[17] ZHANG W J, HU Y, MA L B, et al. Liquid-phase exfoliated ultrathin Bi nanosheets:uncovering the origins of enhanced electrocatalytic CO2reduction on two-dimensional metal nanostructure[J]. Nano Energy, 2018, 53:808-816.

[18] XING C Y, HUANG W C, XIE Z J, et al. Ultrasmall bismuth quantum dots:facile liquid-phase exfoliation, characterization, and application in high-performance UV-Vis photodetector[J]. ACS Photonics, 2018, 5(2):621-629.

[19] JI J P, SONG X F, LIU J Z, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy[J].Nature Communications, 2016, 7:13352.

[20] ARES P, AGUILAR-GALINDO F, RODR魱GUEZ-SANMIGUEL D, et al. Mechanical isolation of highly stable antimonene under ambient conditions[J]. Advanced Materials, 2016, 28(30):6332-6336.

[21] XUE T Y, LIANG W Y, LI Y W, et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor[J]. Nature Communications, 2019,10(1):28.

[22] SENGUPTA A, FRAUENHEIM T. Lithium and sodium adsorption properties of monolayer antimonene[J]. Materials Today Energy, 2017, 5:347-354.

[23] SU L M, TANG X, FAN X, et al. Halogenated antimonene:one-step synthesis, structural simulation, tunable electronic and photoresponse property[J]. Advanced Functional Materials, 2019, 29(45):1905857.

[24] HE M, KRAVCHYK K, WALTER M, et al. Monodisperse antimony nanocrystals for high-rate Li-ion and Naion battery anodes:nano versus bulk[J]. Nano Letters, 2014,14(3):1255-1262.

[25] LU L, TANG X, CAO R, et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots:a promising optical kerr media with enhanced stability[J]. Advanced Op tical Materials, 2017, 5(17):1700301.

[26] TAO W, JI X Y, XU X D, et al. Antimonene quantum dots:synthesis and application as near-infrared photothermal agents for effective cancer therapy[J]. Angewandte Chemie International Edition, 2017, 56(39):11896-11900.

[27] ZHANG Y, LI G H, WU Y C, et al. Antimony nanowire arrays fabricated by pulsed electrode position in anodic alumina membranes[J]. Advanced Materials, 2002, 14(17):1227-1230.

[28] LI L, XIAO Y H, YANG Y W, et al. A facile route to fabricate single-crystalline antimony nanotube arrays[J].Chemistry Letters, 2005, 34(7):930-931.

[29] HU H M, MO M S, YANG B J, et al. A rational complexing-reduction route to antimony nanotubes[J]. New Journal of Chemistry, 2003, 27(8):1161-1163.

[30] ZHANG M, WANG Z H, XI G C, et al. Large-scale synthesis of antimony nanobelt bundles[J]. Journal of Crystal Growth, 2004, 268(1/2):215-221.

[31] WU L M, HUANG W C, WANG Y Z, et al. 2D tellurium based high-performance all-optical nonlinear photonic devices[J]. Advanced Functional Materials, 2019, 29(4):1806346.

[32] WANG Y Z, HUANG W C, WANG C, et al. An all-optical, actively Q-switched fiber laser by an antimonenebased optical modulator[J]. Laser and Photonics Reviews,2019, 13(4):1800313.

[33] MART魱NEZ-PERI?áN E, DOWN M P, GIBAJA C, et al. Antimonene:a novel 2D nanomaterial for supercapacitor applications[J]. Advanced Energy Materials, 2018, 8(11):1702606.

[34] SHI Z Q, LI H P, YUAN Q Q, et al. Van der Waals heteroepitaxial growth of monolayer Sb in a puckered honeycomb structure[J]. Advanced Materials, 2019, 31(5):1806130.

[35] LI W, MAO Y C, LI M Y, et al. Abnormal photoelectric and magnetic properties of three-dimensional super-structure Sb nanocages and one-dimensional nanowires[J]. ECS Journal of Solid State Science and Technology, 2013, 2(3):Q45-Q49.

[36] FAN X Y, JIANG Z, HUANG L, et al. 3D porous selfstanding Sb foam anode with a conformal indium layer for enhanced sodium storage[J]. ACS Applied Materials and Interfaces, 2020, 12(18):20344-20353.

[37] TAYLOR R, COULOMBE S, OTANICAR T, et al. Small particles, big impacts:a review of the diverse applications of nanofluids[J]. Journal of Applied Physics, 2013, 113(1):011301.

[38] HE Z, YANG Y, LIU J W, et al. Emerging tellurium nanostructures:controllable synthesis and their applications[J]. Chemical Society Reviews, 2017, 46(10):2732-2753.

[39] PUMERA M, SOFER Z. 2D monoelemental arsenene, antimonene, and bismuthene:beyond black phosphorus[J].Advanced Materials, 2017, 29(21):1605299.

[40] LI L, XIAO Y H, YANG Y W, et al. Fabrication of antimony junction nanowires in anodic alumina membranes[J].Chemistry Letters, 2005, 34(9):1274-1275.

[41] LUO M M, FAN T J, ZHOU Y, et al. 2D black phosphorus-based biomedical applications[J]. Advanced Functional Materials, 2019, 29(13):1808306.

[42] NIU T C, ZHOU W H, ZHOU D C, et al. Modulating epitaxial atomic structure of antimonene through interface design[J]. Advanced Materials, 2019, 31(29):1902606.

[43] GUO S Y, ZHANG Y P, GE Y Q, et al. 2D V-V binary materials:status and challenges[J]. Advanced Materials,2019, 31(39):1902352.

[44] ZHANG S L, ZHOU W H, MA Y D, et al. Antimonene oxides:emerging tunable direct bandgap semiconductor and novel topological insulator[J]. Nano Letters, 2017, 17(6):3434-3440.

[45] ZHANG S L, GUO S Y, CHEN Z F, et al. Recent progress in 2D group-VA semiconductors:from theory to experiment[J]. Chemical Society Reviews, 2018, 47(3):982-1021.

[46] DU F L, WANG H N. Flower-like Se nanorods synthesized via carbamide-assisted hydrothermal routes[J]. Journal of Materials Science, 2007, 42(22):9476-9479.

[47] AVDIC A, LUGSTEIN A, SCH魻NDORFER C, et al. Focused ion beam generated antimony nanowires for microscale pH sensors[J]. Applied Physics Letters, 2009, 95(22):223106.

[48] CHANG P C, CHEN H Y, YE J S, et al. Vertically aligned antimony nanowires as solid-state pH sensors[J].ChemPhysChem, 2007, 8(1):57-61.

[49] BARATI M, CHOW J C L, UMMAT P K, et al. Temperature dependence of the resistance of antimony nanowire arrays[J]. Journal of Physics:Condensed Matter, 2001, 13(13):2955-2962.

基本信息:

DOI:10.12194/j.ntu.20200429001

中图分类号:TB383.1

引用信息:

[1]黄卫春,王敏敏,胡兰萍等.类黑磷锑烯的研究进展[J],2022,21(01):14-24.DOI:10.12194/j.ntu.20200429001.

基金信息:

国家自然科学基金面上项目(21776140);国家自然科学基金青年科学基金项目(61805147)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文