293 | 2 | 117 |
下载次数 | 被引频次 | 阅读次数 |
最近几年,实验上已经获得了稳定的本征二维铁磁、铁电材料。二维铁性材料由于其新奇的物理性质和在纳米器件中潜在的应用价值而广受关注。随着第一性原理计算方法的发展,从理论角度预测和设计新材料加速了对二维铁性材料的研究。文章重点介绍了课题组在二维极性材料的理论设计方面的若干工作,其中包括:1)在单层过渡金属卤化物中引入点缺陷破坏体系空间反演对称性,可以有效提高磁转变温度,实现磁电共存;2)设计了一种强磁电耦合且转变温度可达室温的二维第二类多铁材料;3)预测了由铁电模式和反铁电模式竞争导致的二维非共线本征亚铁电,研究了其新奇的Z2×Z2铁电畴壁和负压电性质。这些工作对之后的二维极性材料的理论设计和实验探索具有一定的参考价值。
Abstract:In recent years, the stable two-dimensional materials with intrinsic ferromagnetism and ferroelectricity have been produced experimentally. The two-dimensional ferroic materials have obtained extensive concerns due to the intriguing physical properties and potential applications in the nanodevices. With the development of first-principle calculation methods, the theoretical prediction and the new materials design have promoted the research of two-dimensional ferroic materials. This study focuses on the achievements on the theoretical design of two-dimensional polar materials. The first is that the point defects in single-layer transition metal halides can break the spatial inversion symmetry, which can create polarizations and effectively improve the ferromagnetism. Second, a two-dimensional type-II room temperature multiferroic material with strong magnetoelectric coupling is designed. Finally, a family of two-dimensional polar materials with noncollinear proper ferrielectricity caused by the competing ferroelectric and antiferroelectric soft modes is predicted, which enjoys unique physical properties, such as Z2× Z2 topological domains and negative piezoelectricity. These findings can shed lights on further theoretical design and experimental exploration of two-dimensional polar materials.
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[2] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al.Single-layer MoS2transistors[J]. Nature Nanotechnology,2011, 6(3):147-150.
[3] LI H, WU J, YIN Z Y, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2and WSe2nanosheets[J]. Accounts of Chemical Research,2014, 47(4):1067-1075.
[4] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5):372-377.
[5] TAO L, CINQUANTA E, CHIAPPE D, et al. Silicene fieldeffect transistors operating at room temperature[J]. Nanotechnology, 2015, 10(3):227-231.
[6] MERMIN N D, WAGNER H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models[J]. Physical Review Letters, 1966, 17(22):1133-1136.
[7] ZHANG W B, QU Q, ZHU P, et al. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides[J]. Journal of Materials Chemistry C, 2015, 3(48):12457-12468.
[8] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657):270-273.
[9] GONG C, LI L, LI Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J].Nature, 2017, 546(7657):265-269.
[10] BURCH K S, MANDRUS D, PARK J G. Magnetism in two-dimensional van der Waals materials[J]. Nature, 2018,563(7729):47-52.
[11] LEE J U, LEE S, RYOO J H, et al. Ising-type magnetic ordering in atomically thin FePS3[J]. Nano Letters, 2016,16(12):7433-7438.
[12] WANG X Z, DU K Z, FREDRIK LIU Y Y, et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide(FePS3)crystals[J]. 2D Materials, 2016, 3(3):031009.
[13] BONILLA M, KOLEKAR S, MA Y J, et al. Strong roomtemperature ferromagnetism in VSe2monolayers on van der Waals substrates[J]. Nature Nanotechnology, 2018, 13(4):289-293.
[14] O′HARA D J, ZHU T C, TROUT A H, et al. Room temperature intrinsic ferromagnetism in epi taxial manganese selenide films in the monolayer limit[J]. Nano Letters,2018, 18(5):3125-3131.
[15] SPALDIN N A. Materials science:fundamental size limits in ferroelectricity[J]. Science, 2004, 304(5677):1606-1607.
[16] WU M H, BURTON J D, TSYMBAL E Y, et al. Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials[J]. Physical Review B, 2013, 87(8):081406.
[17] di SANTE D, STROPPA A, BARONE P, et al. Emergence of ferroelectricity and spin-valley properties in twodimensional honeycomb binary compounds[J]. Physical Review B, 2015, 91(16):161401.
[18] DING W J, ZHU J B, WANG Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3and other III2-VI3van der Waals materials[J]. Nature Communications, 2017, 8(1):14956.
[19] CHANG K, LIU J W, LIN H C, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe[J]. Science,2016, 353(6296):274-278.
[20] LIU F C, YOU L, SEYLER K L, et al. Room-temperature ferroelectricity in CuInP2S6ultrathin flakes[J]. Nature Communications, 2016, 7(1):12357.
[21] ZHANG X L, YANG Z X, CHEN Y. Novel two-dimensional ferroelectric PbTe under tension:a first-principles prediction[J]. Journal of Applied Physics, 2017, 122(6):064101.
[22] ZHAO Y H, LIN L F, ZHOU Q H, et al. Surface vacancy-induced switchable electric polariza tion and enhanced ferromagnetism in monolayer metal trihalides[J]. Nano Letters, 2018, 18(5):2943-2949.
[23] ZHANG J J, LIN L F, ZHANG Y, et al. Type-II multiferroic Hf2VC2F2MXene monolayer with high transition temperature[J]. Journal of the American Chemical Society,2018, 140(30):9768-9773.
[24] LIN L F, ZHANG Y, MOREO A, et al. Frustrated dipole order induces noncollinear proper ferrielectricity in two dimensions[J]. Physical Review Letters, 2019, 123(6):067601.
[25] QIU H, XU T, WANG Z L, et al. Hopping transport through defect-induced localized states in molybdenum disulphide[J]. Nature Communications, 2013, 4(1):2642.
[26] ZHAO J X, CHEN Z F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation:a computational study[J]. Journal of the American Chemical Society, 2017, 139(36):12480-12487.
[27] KIM J S, YOO H W, CHOI H O, et al. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on Mo S2[J]. Nano Letters, 2014, 14(10):5941-5947.
[28] EERENSTEIN W, MATHUR N D, SCOTT J F. Multiferroic and magnetoelectric materials[J]. Nature, 2006, 442(7104):759-765.
[29] WANG Y F, KR魻GER J, BERNDT R, et al. Pushing and pulling a Sn ion through an adsorbed phthalocyanine molecule[J]. Journal of the American Chemical Society,2009, 131(10):3639-3643.
[30] LILJEROTH P, REPP J, MEYER G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules[J]. Science, 2007, 317(5842):1203-1206.
[31] GOODENOUGH J B. Goodenough-kanamori rule[J]. Scholarpedia, 2008, 3(10):7382.
[32] CHEONG S W, MOSTOVOY M. Multiferroics:a magnetic twist for ferroelectricity[J]. Nature Materials, 2007, 6(1):13-20.
[33] DONG S, LIU J M, CHEONG S W, et al. Multiferroic materials and magnetoelectric physics:symmetry, entanglement, excitation, and topology[J]. Advances in Physics,2015, 64(5/6):519-626.
[34] WU M H, ZENG X C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues[J]. Nano Letters, 2016, 16(5):3236-3241.
[35] LI L, WU M H. Binary compound bilayer and multilayer with vertical polarizations:two-dimen sional ferroelectrics,multiferroics, and nanogenerators[J]. ACS Nano, 2017, 11(6):6382-6388.
[36] TU Z Y, WU M H, ZENG X C. Two-dimensional metalfree organic multiferroic material for design of multifunctional integrated circuits[J]. The Journal of Physical Chemistry Letters, 2017, 8(9):1973-1978.
[37] YANG Q, XIONG W, ZHU L, et al. Chemically functionalized phosphorene:two-dimensional multiferroics with vertical polarization and mobile magnetism[J]. Journal of the American Chemical Society, 2017, 139(33):11506-11512.
[38] KHOMSKII D. Classifying multiferroics:mechanisms and effects[J]. Physics, 2009, 2:20.
[39] KIMURA T, LASHLEY J C, RAMIREZ A P. Inversionsymmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2[J]. Physical Review B, 2006, 73(22):220401.
[40] LIU M F, ZHANG H M, HUANG X, et al. Two-step antiferromagnetic transitions and ferroelectricity in spin-1 triangular lattice antiferromagnetic Sr3NiTa2O9[J]. Inorganic Chemistry, 2016, 55(6):2709-2716.
[41] LEE M, CHOI E S, HUANG X, et al. Magnetic phase diagram and multiferroicity of Ba3MnNb2O9:a spin-5/2 triangular lattice antiferromagnet with weak easy-axis anisotropy[J]. Physical Review B, 2014, 90(22):224402.
[42] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by ex foliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
[43] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012,6(2):1322-1331.
[44] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(43):15966-15969.
[45] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides(MXenes)[J]. ACS Nano, 2015, 9(10):9507-9516.
[46] ZHOU J, ZHA X H, ZHOU X B, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide[J]. ACS Nano, 2017, 11(4):3841-3850.
[47] DONG L, KUMAR H, ANASORI B, et al. Rational design of two-dimensional metallic and semiconducting spintronic materials based on ordered double-transitionmetal MXenes[J]. The Journal of Physical Chemistry Letters, 2017, 8(2):422-428.
[48] XIANG H J, KAN E J, ZHANG Y, et al. General theory for the ferroelectric polarization induced by spin-spiral order[J]. Physical Review Letters, 2011, 107(15):157202.
[49] KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization[J]. Nature, 2003, 426(6962):55-58.
[50] WALKER H C, FABRIZI F, PAOLASINI L, et al. Femtoscale magnetically induced lattice distortions in multiferroic TbMnO3[J]. Science, 2011, 333(6047):1273-1276.
[51] PICOZZI S, YAMAUCHI K, SANYAL B, et al. Dual nature of improper ferroelectricity in a magnetoelectric multiferroic[J]. Physical Review Letters, 2007, 99(22):227201.
[52] KIMURA T. Spiral magnets as magnetoelectrics[J]. Annual Review of Materials Research, 2007, 37(1):387-413.
[53] NAGAOSA N, TOKURA Y. Topological properties and dynamics of magnetic skyrmions[J]. Nature Nanotechnology, 2013, 8(12):899-911.
[54] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous Hall effect[J]. Reviews of Modern Physics, 2010, 82(2):1539.
[55] RAMIREZ A P. Strongly geometrically frus trated magnets[J]. Annual Review of Materials Science, 1994, 24(1):453-480.
[56] DONG S, LIU J M, DAGOTTO E. BaFe2Se3:a high TC magnetic multiferroic with large ferrielectric polarization[J].Physical Review Letters, 2014, 113(18):187204.
[57] ZHU Z, GUAN J, TOM魣NEK D. Structural transition in layered As1-xPxcompounds:a computational study[J]. Nano Letters, 2015, 15(9):6042-6046.
[58]董帅.锰氧化物相竞争的理论研究[D].南京:南京大学,2009.
[59]董帅,向红军.磁致多铁性物理与新材料设计[J].物理,2014, 43(3):173-182.
[60] YANG Y R, REN W, STENGEL M, et al. Revisiting properties of ferroelectric and multiferroic thin films under tensile strain from first principles[J]. Physical Review Letters, 2012, 109(5):057602.
[61] YANG Y R,魱譙IGUEZ J, MAO A J, et al. Prediction of a novel magnetoelectric switching mechanism in multiferroics[J]. Physical Review Letters, 2014, 112(5):057202.
[62] PROSANDEEV S, KORNEV I A, BELLAICHE L. Phase transitions in epitaxial(-110)BiFeO3films from first principles[J]. Physical Review Letters, 2011, 107(11):117602.
[63] NAUMOV I I, BELLAICHE L, FU H X. Unusual phase transitions in ferroelectric nanodisks and nanorods[J]. Nature, 2004, 432(7018):737-740.
[64] YADAV A K, NELSON C T, HSU S L, et al. Observation of polar vortices in oxide superlattices[J]. Nature, 2016,530(7589):198-201.
[65] JARCHOW O, SCHR魻DER F, SCHULZ H. Kristallstruktur und polytypie von WO2Cl2[J]. Zeitschrift für Anorganische Und Allgemeine Chemie, 1968, 363(1/2):58-72.
[66] SCHUSTEREIT T, SCHLEID T, HARTENBACH I. The Non-centrosymmetric crystal structure of molybdenum(VI)oxide bromide MoO2Br2[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2011, 637(9):1159-1161.
[67] WU M H, JENA P. The rise of two-dimensional van der Waals ferroelectrics[J]. Wiley Interdisciplinary Reviews:Computational Molecular Science, 2018, 8(5):e1365.
[68] CHOI T, HORIBE Y, YI H T, et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3[J]. Nature Materials, 2010, 9(3):253-258.
基本信息:
DOI:10.12194/j.ntu.20200119001
中图分类号:TB34;O469
引用信息:
[1]丁宁,董帅.二维极性材料的理论设计[J],2020(02):1-17.DOI:10.12194/j.ntu.20200119001.
基金信息:
国家自然科学基金项目(11834002,11674055)