151 | 0 | 95 |
下载次数 | 被引频次 | 阅读次数 |
基于一般的状态反馈和时变的增益函数,设计了一类全新的光滑控制协议,研究了神经网络的给定时间主从同步问题。与传统的有限时间控制或固定时间控制不同,该同步时间可以根据任务的需求而预先设定,从而具有更好的实用性。所提出的控制协议的同步时间不依赖于任何系统初值和控制器参数,这与目前大多数有限时间控制理论的同步时间由系统的初值和控制器参数决定有着本质的区别。同时,文中设计的控制协议没有使用非连续或非光滑的状态反馈,减少了理论分析难度。最后,数值仿真验证了理论分析的有效性。
Abstract:This paper considers the prespecified-time master-slave synchronization of the neural networks. Based on the regular state feedback and the time-varying gain function, this paper designs a new smooth control protocol to achieve the synchronization of the neural networks in a prespecified time. Different from the traditional finite-time or the fixed-time control, the synchronization time can be assigned in advance according to the task requirements, and thus it has the better practicability. Meanwhile, the synchronization time in the proposed protocol is independent of any initial values or controller parameters, which is essentially different from most existing finite-time control methods.Besides, the proposed protocol does not use the discontinuous or non-smooth state feedbacks, which reduces the difficulty in the theoretical analysis. Finally, some numerical simulations confirm the effectiveness of the theoretical analysis.
[1] BAO H B, PARK J H, CAO J D. Adaptive synchronization of fractional-order memristor-based neural networks with time delay[J]. Nonlinear Dynamics, 2015, 82(3):1343-1354.
[2] YANG X S, CAO J D, LIANG J L. Exponential synchronization of memristive neural networks with delays:interval matrix method[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8):1878-1888.
[3] LI L L, HO D W C, CAO J D, et al. Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism[J]. Neural Networks, 2016, 76:1-12.
[4] CHENG J, PARK J H, KARIMI H R, et al. A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals[J]. IEEE Transactions on Cybernetics, 2018,48(8):2232-2244.
[5] YANG X S, FENG Z G, FENG J W, et al. Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information[J]. Neural Networks, 2017, 85:157-164.
[6] GAO J, ZHU P Y, XIONG W J, et al. Asymptotic synchronization for stochastic memristor-based neural networks with noise disturbance[J]. Journal of the Franklin Institute, 2016,353(13):3271-3289.
[7] WEN S P, ZENG Z G, CHEN M Z Q, et al. Synchronization of switched neural networks with communication delays via the event-triggered control[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10):2334-2343.
[8] LIU X Y, CAO J D, YU W W, et al. Nonsmooth finitetime synchronization of switched coupled neural networks[J].IEEE Transactions on Cybernetics, 2016, 46(10):2360-2371.
[9] YANG X S, LU J Q. Finite-time synchronization of coupled networks with Markovian topology and impulsive effects[J].IEEE Transactions on Automatic Control, 2016, 61(8):2256-2261.
[10] JIANG M H, WANG S T, MEI J, et al. Finite-time synchronization control of a class of memristor-based recurrent neural networks[J]. Neural Networks, 2015, 63:133-140.
[11] XU C, YANG X S, LU J Q, et al. Finite-time synchronization of networks via quantized intermittent pinning control[J]. IEEE Transactions on Cybernetics, 2018, 48(10):3021-3027.
[12] SHEN H, PARK J H, WU Z G. Finite-time synchronization control for uncertain Markov jump neural networks with input constraints[J]. Nonlinear Dynamics, 2014, 77(4):1709-1720.
[13] LIU X Y, SU H S, CHEN M Z Q. A switching approach to designing finite-time synchronization controllers of coupled neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 27(2):471-482.
[14] WU Y Y, CAO J D, LI Q B, et al. Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching[J]. Neural Networks, 2017,85:128-139.
[15] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8):2106-2110.
[16] WAN Y, CAO J D, WEN G H, et al. Robust fixed-time synchronization of delayed Cohen-Grossberg neural networks[J]. Neural Networks, 2016, 73:86-94.
[17] LU W L, LIU X W, CHEN T P. A note on finite-time and fixed-time stability[J]. Neural Networks, 2016, 81:11-15.
[18] WANG L M, ZENG Z G, HU J H, et al. Controller design for global fixed-time synchro nization of delayed neural networks with discontinuous activations[J]. Neural Networks, 2017, 87:122-131.
[19] LIU X W, CHEN T P. Finite-time and fixed-time cluster synchronization with or without pinning control[J]. IEEE Transactions on Cybernetics, 2018, 48(1):240-252.
[20] WANG Y J, SONG Y D, HILL D J, et al. Prescribedtime consensus and containment control of networked multiagent systems[J]. IEEE Transactions on Cybernetics, 2019,49(4):1138-1147.
[21] HOLLOWAY J, KRSTIC M. Prescribed-time output feedback for linear systems in controllable canonical form[J].Automatica, 2019, 107:77-85.
基本信息:
DOI:10.12194/j.ntu.20191018001
中图分类号:TP183
引用信息:
[1]邵劭,王霞,刘小洋等.基于光滑控制的神经网络给定时间同步[J],2020,19(01):77-82+94.DOI:10.12194/j.ntu.20191018001.
基金信息:
国家自然科学基金项目(61773185,61877030);; 2017年及2019年江苏省高校青蓝工程项目