南通大学理学院;
设R是带有1的交换环,环R的零因子图Γ(R)是一个简单图,其中图的顶点是R的所有非零的零因子,且顶点x与顶点y有边当且仅当x≠y,且xy=0.文章主要刻画了一类有限交换局部环,使得它们的零因子图是恰有2个中心且带刺的完全图.
27 | 0 | 20 |
下载次数 | 被引频次 | 阅读次数 |
[1]Beck I.Coloring of commutative rings[J].J Algebra,1988,116(1):208-226.
[2]Anderson D F,Livingston P S.The zero-divisor graph of a commutativering[J].J Algebra,1999,217(2):434-447.
[3]Anderson D F,Frazier A,Lauve A,et al.The zero-divisor graph of a commutative ring:II[J].Lecture Notes in Pure and Appl Math,2001,220:61-72.
[4]Redmond S P.The zero-divisor graph of a non-commutative ring[J].Int J Commutative rings,2002,1(4):203-211.
[5]Mulay S B.Cycles and symmetries of zero-divisors[J].Comm Algebra,2002,30(7):3533-3558.
[6]Liu Qiong,Wu Tongsuo.Commutative rings whose zero-divisor graph is a proper refinement of a star graph[J].Acta Mathematica Sinica,English Series,2011,27(6):1221-1232.
[7]Lu Dancheng,Wu Tongsuo.The zero-divisor graphs which are uniquely determined by neighborhoods[J].Comm Algebra,2007,35(12):3855-3864.
[8]Corbas B,Williams G D.Rings of order p5part I:Nonlocal rings[J].J Algebra,2000,231(2):677-690.
[9]Corbas B,Williams G D.Rings of order p5part II:Local rings[J].J Algebra,2000,231(2):691-704.
[10]Raghavendran R.Finite associative rings[J].Compos Math,1969,21(2):195-229.
基本信息:
DOI:
中图分类号:O157.5;O153.3
引用信息:
[1]徐卉,居腾霞.恰有2个中心且带刺的完全图对应的有限交换环[J],2015,14(01):80-86.
基金信息:
国家自然科学基金项目(11271208)