39 | 0 | 21 |
下载次数 | 被引频次 | 阅读次数 |
考虑在马尔可夫过程环境下索赔到达时间间距为指数分布与Erlang(2)分布混合时的保险风险模型,建立简化的Gerber-Shiu函数所满足的微分积分方程,得到了破产概率所满足的公式.对两状态环境过程中的实例进行了具体的求解,得到的数值结果与预期性质是一致的.
Abstract:The risk model under Markov process environment with claim inter-arrival time obeyed to mixing exponential and Erlang(2) distribution is taken into consideration.According to the Markov modulation model,an integro-differential equation for the simplified Gerber-Shiu function is derived,thus the formula for ruin probability is obtained.An example is used in two process environments,the numerical results are as expected.
[1]Dickson D C M,Hipp C.Ruin probabilities for Erlang(2)risk process[J].Insurance:Mathematics and Economics,1998,22(3):251-261.
[2]Cheng Yebin,Tang Qihe.Moments of the surplus before ru-in and the deficit at ruin in the Erlang(2)risk process[J].North Am Actuar J,2003,7(1):1-12.
[3]Li Shuanming,Garrido J.On ruin for the Erlang(n)riskprocess[J].Insurance:Mathematics and Economics,2001,34(3):391-408.
[4]江五元,刘再明.一类索赔到达时间间距为混合分布的平均折现惩罚函数[J].应用数学学报,2009,32(4):757-765.
[5]Reinhard J M.On a class of semi-Markov risk models ob-tained as classical risk models in a Markovian environment[J].Astin Bulletin,1984,14(1):23-43.
[6]Cossette H,Landriault D,Marceau魪.Ruin probabilities inthe compound Markov binomial model[J].ScandinavianActuarial Journal,2003,2003(4):301-323.
[7]Yuen Kamchuen,Guo Junyi.Some results on the compoundMarkov binomial models[J].Scandinavian Actuarial Jour-nal,2006(3):129-140.
[8]Lin X S,Willmot G E.Analysis of a defective renewalequation arising in ruin theory[J].Insurance:Mathematicsand Economics,1999,25(1):63-84.
[9]聂高琴,刘次华.常数红利下索赔到达时间间距为混合分布的罚金折现期望函数[J].数学的实践与认识,2011,41(19):199-205.
[10]顾聪.保险精算中的随机风险模型[D].杭州:浙江大学理学部,2010.
[11]陈茜,李范良.马氏环境下的广义复合Poisson风险模型[J].湘潭大学自然科学学报,2010,32(3):28-30.
[12]董海玲,侯振挺,张希娜.一类马氏调制风险模型的破产概率[J].工程数学学报,2009,26(3):381-388.
[13]龚纯,王正林.MATLAB语言常用算法程序集[M].北京:电子工业出版社,2011:428-470.
[14]刘冬兵.常微分方程初值问题的线性多步法基本公式的研究[D].重庆:重庆大学数理学院,2006.
[15]刘双杰.基于MATLAB的微分方程组的数值计算[J].科技资讯,2009(6):27-33.
基本信息:
DOI:
中图分类号:O211.62
引用信息:
[1]刘诚霖.一类索赔时间间距为混合分布的马氏调制风险模型[J],2013,12(01):71-75.
基金信息:
国家自然科学基金项目(NSFC10971127)