900 | 4 | 388 |
下载次数 | 被引频次 | 阅读次数 |
金属有机骨架化合物(metal organic frameworks,MOFs)是一类新型晶态多孔材料,具有表面积大、孔隙率高、合成成本低等特点。由于MOFs具有独特的孔道结构和分散的活性中心,它在催化领域得到了广泛的应用。首先,介绍了常见MOFs的种类和合成方法,总结了不同合成方法的特点;然后,梳理了MOFs作为光催化剂高效去除废水中的重金属、染料以及抗生素等的最新研究进展,阐述了MOFs及复合材料光催化不同污染物时的反应机理、反应效率、各种实验条件对光催化性能的影响;最后,对MOFs光催化处理废水的前景进行了展望,并探讨了所面临的挑战。
Abstract:Metal organic frameworks(MOFs) is a new type of crystalline porous material, which has the characteristics of high surface area, high porosity and low synthesis cost. MOFs have been widely used in the field of catalysis due to its unique porous structure and discrete active centers. Firstly, the types and synthesis methods of common MOFs are introduced, and the characteristics of different synthesis methods are summarized. Then, the latest research progress of MOFs as photocatalysts for the efficient removal of heavy metals, dyes, and antibiotics in wastewater is reviewed. The photocatalysis of MOFs and composite materials on different pollutants, reaction efficiency, and various experimental conditions are performed. Finally, the prospects and challenges of MOFs as photocatalysis in wastewater treatment are discussed.
[1]ZHU M Y,CAI Y W,LIU S Y,et al.K2Ti6O13hybridized graphene oxide:effective enhancement in photodegradation of Rh B and photoreduction of U(VI)[J].Environmental Pollution,2019,248:448-455.
[2]WANG X N,JIA J P,WANG Y L.Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline[J].Chemical Engineering Journal,2017,315:274-282.
[3]方明,谭小丽.金属表面等离子体增强半导体纳米材料光催化机理研究进展[J].南通大学学报(自然科学版),2019,18(2):1-13.
[4]XIONG T,HUANG H W,SUN Y J,et al.In situ synthesis of a C-doped (Bi O)2CO3hierarchical self-assembly effectively promoting visible light photocatalysis[J].Journal of Materials Chemistry A,2015,3(11):6118-6127.
[5]ORCAJO G,MONTES-ANDR魪S H,VILLAIOS J A,et al.Li-Crown ether complex inclusion in MOF materials for enhanced H2volumetric storage capacity at room temperature[J].International Journal of Hydrogen Energy,2019,44 (35):19285-19293.
[6]LEE J,KWAK S Y.Mn-doped maghemite(γ-Fe2O3) from metal-organic framework accompanying redox reaction in a bimetallic system:the structural phase transitions and catalytic activity toward NOxremoval[J].ACS Omega,2018,3(3):2634-2640.
[7]LAZARO I A,FORGAN R S.Application of zirconium MOFs in drug delivery and biomedicine[J].Coordination Chemistry Reviews,2019,380:230-259.
[8]XIN Z F,CHEN X S,WANG Q,et al.Nanopolyhedrons and mesoporous supra-structures of Zeolitic Imidazolate framework with high adsorption performance[J].Microporous and Mesoporous Materials,2013,169:218-221.
[9]LET S,SAMANTA P,DUTTA S,et al.A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe (III) ions in water[J].Inorganica Chimica Acta,2020,500:119205.
[10]GAUTAM S,AGRAWAL H,THAKUR M,et al.Metal oxides and metal organic frameworks for the photocatalytic degradation:a review[J].Journal of Environmental Chemical Engineering,2020,8(3):103726.
[11]HE H B,LI R,YANG Z H,et al.Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution:a review[J/OL].Catalysis Today,2020.http://doi.org/10.1016/j.cattod.2020.02.033.
[12]WANG C C,LI J R,LV X L,et al.Photocatalytic organic pollutants degradation in metal-organic frameworks[J].Energy&Environmental Science,2014,7(9):2831-2867.
[13]ALHAMAMI M,DOAN H,CHENG C H.A review on breathing behaviors of metal-organic-frameworks (MOFs)for gas adsorption[J].Materials,2014,7(4):3198-3250.
[14]PHAN N T S,LE K K A,PHAN T D.MOF-5 as an efficient heterogeneous catalyst for Friedel-Crafts alkylation reactions[J].Applied Catalysis A:General,2010,382(2):246-253.
[15]XIE K,SHAN C H,QI J S,et al.Study of adsorptive removal of phenol by MOF-5[J].Desalination and Water Treatment,2015,54(3):654-659.
[16]LIU Z W,ZHANG K,WU Y,et al.New functionalized IRMOF-10 with strong affinity for methanol:a simulation study[J].Applied Surface Science,2018,440:351-358.
[17]GADIPELLI S,TRAVIS W,ZHOU W,et al.A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2uptake[J].En ergy and Environmental Science,2014,7(7):2232-2238.
[18]LU S,HUMMEL M,CHEN K,et al.Synthesis of Au@ZIF-8 nanocomposites for enhanced electrochemical detection of dopamine[J].Electrochemistry Communications,2020,114:106715.
[19]SAKAMOTO H,KITAURA R,MATSUDA R,et al.Systematic construction of porous coordination pillared-layer structures and their sorption prop erties[J].Chemistry Letters,2010,39(3):218-219.
[20]LIANG R W,JING F F,SHEN L J,et al.MIL-53 (Fe)as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr (VI) and oxidation of dyes[J].Journal of Hazardous Materials,2015,287:364-372.
[21]WEN M C,MORI K,KAMEGAWA T,et al.Aminefunctionalized MIL-101(Cr) with imbedded platinum nanoparticles as a durable photocatalyst for hydrogen production from water[J].Chemical Communications,2014,50(79):11645-11648.
[22]MOREIRA M A,SANTOS J C,FERREIRA A F P,et al.Effect of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125 (Ti)_NH2[J].Microporous and Mesoporous Materials,2012,158:229-234.
[23]MA S Q,SUN D F,AMBROGIO M,et al.Frameworkcatenation isomerism in metal-organic frameworks and its impact on hydrogen uptake[J].Journal of the American Chemical Society,2007,129(7):1858-1859.
[24]MA S Q,SUN D F,SIMMONS J M,et al.Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake[J].Journal of the American Chemical Society,2008,130(3):1012-1016.
[25]ZHANG L P,DU M,LU W J,et al.Porous coordination networks generated from lanthanum trifluoromethanesulfonate and single/mixed N-oxide spacer linkers[J].Polyhedron,2004,23(5):857-863.
[26]KIM S N,KIM J,KIM H Y,et al.Adsorp tion/catalytic properties of MIL-125 and NH2-MIL-125[J].Catalysis Today,2013,204:85-93.
[27]L魣ZARO I A,HADDAD S,SACCA S,et al.Selective surface PEGylation of Ui O-66 nanoparticles for enhanced stability,cell uptake,and p H-responsive drug delivery[J].Chem,2017,2(4):561-578.
[28]WANG C C,HO Y S.Research trend of metal-organic frameworks:a bibliometric analysis[J].Scientometrics,2016,109(1):481-513.
[29]WANG C C,GUO G L,WANG P.Two sodium and lanthanide(III) MOFs based on oxalate and V-shaped 4,4′-oxybis (benzoate) ligands:hydrothermal synthesis,crystal structure,and luminescence properties[J].Journal of Molecular Structure,2013,1032:93-99.
[30]DU J,ZOU G L.A novel microporous zinc (II) metal-organic framework with highly selectivity adsorption of CO2over CH4[J].Inorganic Chemistry Communications,2016,69:20-23.
[31]JALALI S,RAHIMI M R,DASHTIAN K,et al.One step integration of plasmonic Ag2Cr O4/Ag/Ag Cl into HKUST-1-MOF as novel visible-light driven photocatalyst for highly efficient degradation of mixture dyes pollutants:its photocatalytic mechanism and modeling[J].Polyhedron,2019,166:217-225.
[32]LEE Y R,KIM J,AHN W S.Synthesis of metal-organic frameworks:a mini review[J].Korean Journal of Chemical Engineering,2013,30(9):1667-1680.
[33]JOARISTI A M,JUAN-ALCA譙IZ J,SERRA-CRESPOP,et al.Electrochemical synthesis of some archetypical Zn2+,Cu2+,and Al3+metal organic frameworks[J].Crystal Growth&Design,2012,12(7):3489-3498.
[34]YANG H M,LIU X,SONG X L,et al.In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of Bi OBr[J].Transactions of Nonferrous Metals Society of China,2015,25 (12):3987-3994.
[35]CHEN Y W,XIAO J,LV D F,et al.Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability[J].Chemical Engineering Science,2017,158:539-544.
[36]SINGH N K,GUPTA S,PECHARSKY V K,et al.Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks[J].Journal of Alloys and Compounds,2017,696:118-122.
[37]LIANG Y H,SHANG R,LU J R,et al.2D MOFs enriched g-C3N4nanosheets for highly efficient charge separation and photocatalytic hydrogen evolution from water[J].International Journal of Hydrogen Energy,2019,44 (5):2797-2810.
[38]HU Y Y,LIU C,ZHANG Y H,et al.Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size[J].Microporous and Mesoporous Materials,2009,119(1/2/3):306-314.
[39]BAG P P,WANG X S,CAO R.Microwave-assisted large scale synthesis of lanthanide metal-organic frameworks(Ln-MOFs),having a pre ferred conformation and photoluminescence properties[J].Dalton Transactions,2015,44(26):11954-11962.
[40]da SILVA C T P,SAFADI B N,MOIS魪S M P,et al.Synthesis of Zn-BTC metal organic framework assisted by a home microwave oven and their unusual morphologies[J].Materials Letters,2016,182:231-234.
[41]MCKINSTRY C,CUSSEN E J,FLETCHER A J,et al.Scalable continuous production of high quality HKUST-1via conventional and microwave heating[J].Chemical Engineering Journal,2017,326:570-577.
[42]ZHU W,LIU P J,XIAO S N,et al.Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NOoxidization[J].Applied Catalysis B:Environmental,2015,172/173:46-51.
[43]KHAN N A,JHUNG S H.Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound:rapid reaction,phase-selectivity,and size reduction[J].Coordination Chemistry Reviews,2015,285:11-23.
[44]ARMSTRONG M R,SENTHILNATHAN S,BALZER CJ,et al.Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis[J].Ultrasonics Sonochemistry,2017,34:365-370.
[45]MASOOMI M Y,BAGHERI M,MORSALI A.Porosity and dye adsorption enhancement by ultrasonic synthesized Cd(II) based metal-organic framework[J].Ultrasonics Sonochemistry,2017,37:244-250.
[46]WEN M C,KUWAHARA Y,MORI K,et al.Nanometalloaded metal-organic-framework photocatalysts,nanostructured photocatalysts[M]//YAMASHITA H,LI H X.Nanostructured Photocatalysts.Switzerland:Cham Springer International Publishing,2016:507-522.
[47]EVANS J D,GARAI B,REINSCH H,et,al.Metal-organic frameworks in Germany:from syn thesis to function[J].Coordination Chemistry Reviews,2019,380:378-418.
[48]LIU B,HAN W F,CHEN A M,et al.Confinement of Al F3in MOF derived structures for the formation of 4-fold coordinated Al and significantly improved dehydrofluorination activity[J].Chemical Engineering Journal,2020,394:124946.
[49]SUN X Y,SHI Y,ZHANG W,et al.A new type Ni-MOFcatalyst with high stability for selective catalytic reduction of NOxwith NH3[J].Catalysis Communications,2018,114:104-108.
[50]FANG Z L,BUEKEN B,de VOS D E,et al.Defect engineered metal-organic frameworks[J].Angewandte Chemie International Edition,2015,54(25):7234-7254.
[51]SLATER B,WANG Z R,JIANG S X,et al.Missing linker defects in a homochiral metal-organic framework:tuning the chiral separation capacity[J].Journal of the American Chemical Society,2017,139(50):18322-18327.
[52]MARX S,KLEIST W,BAIKER A.Synthe sis,structural properties,and catalytic behavior of Cu-BTC and mixedlinker Cu-BTC-Py DC in the ox idation of benzene derivatives[J].Journal of Catalysis,2011,281(1):76-87.
[53]MOSLEH S,RAHIMI M R,GHAEDI M,et al.HKUST-1-MOF-Bi VO4hybrid as a new sonophotocatalyst for simultaneous degradation of disulfine blue and rose bengal dyes:optimization and statistical modelling[J].RSC Advances,2016,6(66):61516-61527.
[54]MOSLEH S,RAHIMI M R,GHAEDI M,et al.Bi PO4/Bi2S3-HKUST-1-MOF as a novel blue light-driven photocatalyst for simultaneous degradation of toluidine blue and auramine-O dyes in a new rotating packed bed reactor:optimization and comparison to a conventional reactor[J].RSCAdvances,2016,6(68):63667-63680.
[55]MOSLEH S,RAHIMI M R,GHAEDI M,et al.Ag3PO4/Ag Br/Ag-HKUST-1-MOF composites as novel blue LEDlight active photocatalyst for enhanced degradation of ternary mixture of dyes in a rotating packed bed reactor[J].Chemical Engineering and Processing Process Intensification,2017,114:24-38.
[56]MOSLEH S,RAHIMI M R,GHAEDI M,et al.Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF:central composite optimization and synergistic effect study[J].Ultrasonics Sonochemistry,2016,32:387-397.
[57]LI T F,LU M,GAO Y H,et al.Double layer MOFs M-ZIF-8@ZIF-67:the adsorption capacity and removal mechanism of fipronil and its metabolites from environmental water and cucumber samples[J].Journal of Advanced Research,2020,24:159-166.
[58]HE J Y,CAI X G,CHEN K,et al.Perfor mance of a novelly-defined zirconium metal-organic frameworks adsorption membrane in fluoride removal[J].Journal of Colloid and Interface Science,2016,484:162-172.
[59]WANG C C,DU X D,LI J,et al.Photocatalytic Cr (VI)reduction in metal-organic frameworks:a mini-review[J].Applied Catalysis,B:Environmental,2016,193:198-216.
[60]QU J F,CHEN D Y,LI N J,et al.Coral-inspired nanoscale design of porous Sn S2for photo catalytic reduction and removal of aqueous Cr(VI)[J].Applied Catalysis B:Environmental,2017,207:404-411.
[61]LIANG R W,JING F F,SHEN L J,et al.MIL-53 (Fe)as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr (VI) and oxidation of dyes[J].Journal of Hazardous Materials,2015,287(28):364-372.
[62]YI X H,WANG F X,DU X D,et al.Highly efficient photocatalytic Cr(VI) reduction and organic pollutants degradation of two new bifunctional 2D Cd/Co-based MOFs[J].Polyhedron,2018,152:216-224.
[63]LIANG R W,JING F F,SHEN L J,et al.M@MIL-100(Fe)(M=Au,Pd,Pt) nanocomposites fabricated by a facile photodeposition process:efficient visible-light photocatalysts for redox reactions in water[J].Nano Research,2015,8(10):3237-3249.
[64]HE R,XUE K H,WANG J,et al.Design and synthesis of La3+-,Sb3+-doped MOF-In2S3@Fc Dc-TAPT COFs hybrid materials with en hanced photocatalytic activity[J].Journal of Materials Science 2019,54(24):14690-14706.
[65]PI Y H,LI X Y,XIA Q B,et al.Forma tion of willow leaf-like structures composed of NH2-MIL68 (In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr (VI)[J].Nano Research,2017,10(10):3543-3556.
[66]HUANG W Y,LIU N,ZHANG X D,et al.Metal organic framework g-C3N4/MIL-53 (Fe) heterojunctions with enhanced photocatalytic activity for Cr (VI) reduction under visible light[J].Applied Surface Science,2017,425(15):107-116.
[67]WANG F X,CHEN X,WANG P,et al.New Zn/Cd coordination polymers constructed from mixed ligands:crystal structures and photocatalytic performances toward organic dyes degradation[J].Journal of Inorganic and Organometallic Polymers and Materials,2018,28(4):1565-1573.
[68]GAO C,WANG J,XU H X,et al.Coordination chemistry in the design of heterogeneous photocatalysts[J].Chemical Society Reviews,2017,46(10):2799-2823.
[69]KANG W C,LIU D,BLATOV V A,et al.Unique selfcatenated 3D Cd(II)-MOF with a rare (3,3,9)-connected underlying network exhibiting high photocatalytic activities[J].Inorganic Chemistry Communications,2019,102:126-129.
[70]WU W P,LI B H,GU C Y,et al.Luminescent sensing of Cu2+,Cr O42+and photocatalytic degradation of methyl violet by Zn (II) metal-organic framework (MOF) having 5,5′(1H-2,3,5-triazole-1,4-diyl) diisophthalic acid ligand[J].Journal of Molecular Structure,2017,1148:531-536.
[71]LI Q,FAN Z L,ZHANG L H,et al.Boosting and tuning the visible photocatalytic degradation performances towards reactive blue 21 via dyes@MOF composites[J].Journal of Solid State Chemistry,2019,269:465-475.
[72]FANG Y,ZHU S R,WU M K,et al.MOF-derived In2S3nanorods for photocatalytic removal of dye and antibiotics[J].Journal of Solid State Chemistry,2018,266:205-209.
[73]DU Y Y,ZHAO L,CHEN H,et al.Synthesis and enhanced visible light-induced photo catalytic activity of a hierarchical porous biomorphic N/Zn-Ti O2@NH2-MIL-125photocatalyst[J].Journal of Materials Science:Materials in Electronics,2018,29(23):20356-20366.
[74]THANH M T,THIEN T V,DU P D,et al.Iron doped zeolitic imidazolate framework (Fe-ZIF-8):synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8[J].Journal of Porous Materials,2018,25(3):857-869.
[75]WU D Y,WU C Y.Mo S2microspheres/MOF-derived In2S3heterostructures with enhanced visible-light photocatalytic activity[J].Journal of Sol-Gel Science and Technology,2020,94(2):251-256.
[76]CHEN Y,ZHAI B Y,LIANG Y N,et al.Preparation of Cd S/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation[J].Journal of Solid State Chemistry,2019,274:32-39.
[77]HU L X,ZHANG Y Y,LU W C,et al.Easily recyclable photocatalyst Bi2WO6/MOF/PVDF composite film for efficient degradation of aqueous refractory organic pollutants under visible-light irradiation[J].Journal of Materials Science,2019,54(8):6238-6257.
[78]REN W,HAN F,LU J K,et al.A new La(III)-MOF for efficient dye photodegradation and protective effect on exercise pain after total knee arthroplasty by reducing nicotinic acetylcholine receptors expression[J].Journal of Inorganic and Organometallic Polymers and Materials,2020,30(5):1782-1789.
[79]PANNERI S,THOMAS M,GANGULY P,et al.C3N4anchored ZIF 8 composites:photo-regenerable,high capacity sorbents as adsorptive photocat alysts for the effective removal of tetracycline from water[J].Catalysis Science&Technology,2017,7(10):2118-2128.
[80]WANG D B,JIA F Y,WANG H,et al.Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J].Journal of Colloid and Interface Science,2018,519:273-284.
基本信息:
DOI:10.12194/j.ntu.20200613001
中图分类号:O643.36;X703;O644.1
引用信息:
[1]王路平,卢占会,谭小丽等.MOFs及其复合物光催化降解水中污染物的应用研究进展[J],2021,20(01):14-27.DOI:10.12194/j.ntu.20200613001.
基金信息:
中央高校基本科研业务费专项资金资助项目(2019MS040);; 国家自然科学基金项目(U1607102,21377132,91326202)