1,427 | 22 | 207 |
下载次数 | 被引频次 | 阅读次数 |
高端装备智能制造场景需要通信网络能够提供高速可靠的数据传输、支持海量互联的传感器接入。文章通过对5G技术及其优势的调查,结合智能制造发展历程和关键技术,分析了"5G+工业互联网"的技术框架和在智能制造中的应用与发展前景。分析结果表明,5G和工业互联网的发展可以为智能制造提供良好的解决方案。
Abstract:In the high-end equipment intelligent manufacturing scenario, the communication networks should be reliable and fast, and can support the massive connection of sensors. With the knowledge of 5 G and its advantages,this paper summarizes the development and key technologies of intelligent manufacturing, and further analyzes the framework of "5 G+industrial Internet" and its potential applications. The findings prove that the advancement of 5G and industrial Internet can provide a good solution for intelligent manufacturing.
[1] NING F H, ZHOU W Z, ZHANG F Y, et al. The architecture of cloud manufacturing and its key technologies research[C]//Proceedings of 2011 IEEE International Conference on Cloud Computing and Intelligence Systems, September 15-17, 2011, Beijing, China. New York:IEEE Xplore,2011:259-263.
[2] ZHOU J, ZHOU Y H, WANG B C, et al. Human-cyberphysical systems(HCPSs)in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5(4):624-636.
[3] 3GPP. The mobile broadband standard[S/OL].[2020-10-20].https://www.3gpp.org/specifications/specification-numbering.
[4] AKYILDIZ I F, NIE S, LIN S C, et al. 5G roadmap:10key enabling technologies[J]. Computer Networks, 2016, 106:17-48.
[5] 3rd generation partnership project release 15[R/OL].[2020-10-20]. https://www.3gpp.org/release-15.
[6] 3rd generation partnership project release 16[R/OL].[2020-10-20]. https://www.3gpp.org/release-16.
[7] RAMESH M, PRIYA C G, AARTHI ALAIS ANANTHAKIRUPA V P M B. Design of efficient massive MIMO for 5G systems—present and past:a review[C]//Proceedings of 2017International Conference on Intelligent Computing and Control(I2C2), June 23-24, 2017, Coimbatore, India. New York:IEEE Xplore, 2017:1-4.
[8] HU Z W, ZHENG Z J, WANG T, et al. Caching as a service:small-cell caching mechanism design for service providers[J]. IEEE Transactions on Wireless Communications,2016, 15(10):6992-7004.
[9] RAPPAPORT T S, SUN S, MAYZUS R, et al. Millimeter wave mobile communications for 5G cellular:it will work![J]. IEEE Access, 2013, 191:335-349.
[10] CONDOLUCI M, MAHMOODI T. Softwarization and virtualization in 5G mobile networks:benefits, trends and challenges[J]. Computer Networks, 2018, 146:65-84.
[11] WAN J F, CHEN M, XIA F, et al. From machine-to-machine communications towards cyber-physical systems[J].Computer Science and Information Systems, 2013, 10(3):1105-1128.
[12] SAIFULLAH A, XU Y, LU C Y, et al. End-to-end communication delay analysis in industrial wireless networks[J].IEEE Transactions on Computers, 2015, 64(5):1361-1374.
[13] BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2):74-80.
[14] GAMAGE H, RAJATHEVA N, LATVA-AHO M. Channel coding for enhanced mobile broadband communication in5G systems[C]//Proceedings of 2017 European Conference on Networks and Communications(EuCNC), June 12-15, 2017,Oulu, Finland. New York:IEEE Xplore, 2017:1-6.
[15] WANG C X, HAIDER F, GAO X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks[J]. IEEE Communications Magazine, 2014,52(2):122-130.
[16] JUNGNICKEL V, MANOLAKIS K, ZIRWAS W, et al.The role of small cells, coordinated multipoint, and massive MIMO in 5G[J]. IEEE Communications Magazine,2014, 52(5):44-51.
[17] SUTTON G J, ZENG J, LIU R P, et al. Enabling technologies for ultra-reliable and low latency communications:from PHY and MAC layer perspectives[J]. IEEE Communications Surveys&Tutorials, 2019, 21(3):2488-2524.
[18] MITOLA J, GUERCI J, REED J, et al. Accelerating 5G QoE via public-private spectrum sharing[J]. IEEE Communications Magazine, 2014, 52(5):77-85.
[19] PENG M G, ZHANG K C, JIANG J M, et al. Energy-efficient resource assignment and power allocation in heterogeneous cloud radio access networks[J]. IEEE Transactions on Vehicular Technology, 2015, 64(11):5275-5287.
[20] I C L, ROWELL C, HAN S F, et al. Toward green and soft:a 5G perspective[J]. IEEE Communications Magazine,2014, 52(2):66-73.
[21] SHI W S, CAO J, ZHANG Q, et al. Edge computing:vision and challenges[J]. IEEE Internet of Things Journal,2016, 3(5):637-646.
[22] NEE A Y C, ONG S K, CHRYSSOLOURIS G, et al.Augmented reality applications in design and manufacturing[J]. CIRP Annals, 2012, 61(2):657-679.
[23] XU L D, WANG C G, BI Z M, et al. AutoAssem:an automated assembly planning system for complex products[J].IEEE Transactions on Industrial Informatics, 2012, 8(3):669-678.
[24] TAO F, CHENG J F, QI Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J].The International Journal of Advanced Manufacturing Technology, 2018, 94(9/10/11/12):3563-3576.
[25] XU L D, HE W, LI S C. Internet of things in industries:a survey[J]. IEEE Transactions on Industrial Informatics,2014, 10(4):2233-2243.
[26] ZHOU J, LI P G, ZHOU Y H, et al. Toward new-generation intelligent manufacturing[J]. Engineering, 2018, 4(1):11-20.
[27] KUSIAK A. Smart manufacturing must embrace big data[J].Nature, 2017, 544(7648):23-25.
[28] LI J R, TAO F, CHENG Y, et al. Big data in product lifecycle management[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(1/2/3/4):667-684.
[29] LEE J, LAPIRA E, BAGHERI B, et al. Recent advances and trends in predictive manufacturing systems in big data environment[J]. Manufacturing Letters, 2013, 1(1):38-41.
[30] EVANS P C, ANNUNZIATA M. Industrial Internet:pushing the boundaries of minds and machines[J]. General Electric,2012:37.
[31] WU D Z, ROSEN D W, SCHAEFER D. Scalability planning for cloud-based manufacturing systems[J]. Journal of Manufacturing Science and Engineering, 2015, 137(4):040911.
[32] TAO F, CHENG J F, CHENG Y, et al. SDMSim:a manufacturing service supply-demand matching simulator under cloud environment[J]. Robotics and Computer-Integrated Manufacturing, 2017, 45:34-46.
[33]工业互联网产业联盟.工业互联网平台白皮书[R/OL].[2020-10-20]. http://www.aii-alliance.org/upload/202002/0228_135747_302.pdf.
[34] GE predix platform:the foundation for digital industrial applications[EB/OL].[2020-10-20]. https://www.ge.com/digital/predix-platform-foundation-digital-industrial-applications.
[35] KREUTZ D, RAMOS F M V, VER魱SSIMO P E, et al.Software-defined networking:a comprehensive survey[J].Proceedings of the IEEE, 2015, 103(1):14-76.
[36]夏虹,陈彦萍,王忠民,等.无线移动支持工业互联网研究[J].微处理机,2017, 38(2):34-40.
[37] XU F M, YANG F, WU X Y, et al. Application and experiments of 5G technology powered industrial Internet[C]//Proceedings of 2019 IEEE International Conference on Communications Workshops(ICC Workshops), May 20-24,2019, Shanghai, China. New York:IEEE Xplore, 2019:1-6.
[38] SIRIWARDHANA Y, PORAMBAGE P, LIYANAGE M,et al. Micro-operator driven local 5G network architecture for industrial Internet[C]//Proceedings of 2019 IEEE Wireless Communications and Networking Conference(WCNC),April 15-18, 2019, Marrakesh, Morocco. New York:IEEE Xplore, 2019:1-8.
[39] LYU L, CHEN C L, ZHU S Y, et al. 5G enabled codesign of energy-efficient transmission and estimation for industrial IoT systems[J]. IEEE Trans actions on Industrial Informatics, 2018, 14(6):2690-2704.
[40] OROSZ P, VARGA P, SO魷S G, et al. QoS guarantees for industrial IoT applications over LTE:a feasibility study[C]//Proceedings of 2019 IEEE International Conference on Industrial Cyber Physical Systems(ICPS), May 6-9, 2019,Taipei, Taiwan, China. New York:IEEE Xplore, 2019:667-672.
[41] AAZAM M, HARRAS K A, ZEADALLY S. Fog computing for 5G tactile industrial Internet of things:QoE-aware resource allocation model[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5):3085-3092.
[42] CHEN C H, LIN M Y, LIU C C. Edge computing gateway of the industrial Internet of things using multiple collaborative microcontrollers[J]. IEEE Network, 2018, 32(1):24-32.
[43] HU S, YU B, QIAN C, et al. Nonorthogonal interleavegrid multiple access scheme for industrial Internet of things in 5G network[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12):5436-5446.
[44] LEE J, BAGHERI B, KAO H G. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems[J]. Manufacturing Letters, 2015, 3:18-23.
[45] MONOSTORI L, K魣D魣R B, BAUERNHANSL T, et al.Cyber-physical systems in manufacturing[J]. CIRP Annals,2016, 65(2):621-641.
[46] de CARVALHO E, BJORNSON E, SORENSEN J H, et al. Random access protocols for massive MIMO[J]. IEEE Communications Magazine, 2017, 55(5):216-222.
[47] LI S C, XU L D, ZHAO S S. The Internet of things:a survey[J]. Information Systems Frontiers, 2015, 17(2):243-259.
[48] SHARMA S K, WANG X B. Toward massive machine type communications in ultra-dense cellular IoT networks:current issues and machine learning-assisted solutions[J].IEEE Communications Surveys&Tutorials, 2020, 22(1):426-471.
[49] NIYATO D, MASO M, KIM D I, et al. Practical perspectives on IoT in 5G networks:from theory to industrial challenges and business opportunities[J]. IEEE Communications Magazine, 2017, 55(2):68-69.
[50] CHENG J F, CHEN W H, TAO F, et al. Industrial IoT in5G environment towards smart manufacturing[J]. Journal of Industrial Information Integration, 2018, 10:10-19.
[51] WANG S Y, WAN J F, ZHANG D Q, et al. Towards smart factory for Industry 4.0:a self-organized multi-agent system with big data based feedback and coordination[J].Computer Networks, 2016, 101:158-168.
[52] CHEN B T, WAN J F, SHU L, et al. Smart factory of Industry 4.0:key technologies, application case, and challenges[J]. IEEE Access, 2018, 6:6505-6519.
[53] TALEB T, AFOLABI I, BAGAA M. Orchestrating 5G network slices to support industrial Internet and to shape next-generation smart factories[J]. IEEE Network, 2019, 33(4):146-154.
[54] 3rd generation partnership project, study on communication for automation in vertical domains(CAV), technical report 22.804 V16.3.0[R/OL].[2020-10-20]. https://www.3gpp.org/ftp//Specs/archive/22_series/22.804/22804-g30.zip.
[55] 3rd generation partnership project, service requirements for cyber-physical control applications in vertical domains,technical specification 22.104 V17.3.0[S/OL].[2020-10-20]. https://www.3gpp.org/ftp//Specs/archive/22_series/22.104/22104-h30.zip.
[56] CISCO. Fog computing and the internet of things:extend the cloud to where the things are[R/OL].(2015-04-15)[2020-10-20]. https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf.
基本信息:
DOI:10.12194/j.ntu.20201021002
中图分类号:F424;F49
引用信息:
[1]陈晓敏,赵涛涛,袁雪腾等.“5G+工业互联网”时代的高端装备智能制造[J],2021,20(03):1-12.DOI:10.12194/j.ntu.20201021002.
基金信息: