| 137 | 0 | 444 |
| 下载次数 | 被引频次 | 阅读次数 |
针对车联网IEEE 802.11P通信协议应用于车与车之间的短程通信以提高数据传输效率,提出了该通信协议中随机退避机制的模型检测方法。分析了分布式协调功能的基本接入技术,从多个属性角度对双向握手机制中的随机退避过程进行了深入地分析与验证;建立了双向握手机制的车辆通信系统网络模型、基于概率时间自动机的共享信道模型及基于马尔可夫决策过程的随机退避状态转移过程;使用概率时间自动机语法、语义规则及其相关定理、推论建立了随机退避过程的数学模型;基于概率模型检测方法对相关模型进行验证和性能分析。仿真分析结果表明:所有的到达状态均满足概率连续随机计算数逻辑属性定义公式要求,车与车之间在短距离数据通信传输中具有较高的成功率,验证了IEEE 802.11P协议在车辆短程通信中具有良好的表现性,确保了车联网链路生存性,为车联网通信链路连通性分析提供了研究基础。
Abstract:Aiming at the applications of IEEE 802.11P communication protocol in vehicle networks for efficient shortrange communications, a model checking of random backoff mechanism for IEEE 802.11P is proposed. The basic access technology for distributed coordination function(DCF) in IEEE 802.11P is emphatically analyzed. Specifically,the random backoff process in two-way handshake system is analyzed and verified; a network model of vehicle communication system based on bidirectional handshake mechanism is established, and the shared channel model based on probabilistic timed automata(PTA) is also provided. With this model, a PTA-based sharing channel model is proposed, a Markov decision process(MDP)-based random backoff state transfer process is considered according to the random back off mechanism, the mathematical abstract model of the random backoff process is established by using PTA syntax, semantic rules and their related theorems and inferences. Moreover, based on the time-varying probability model, arrival analysis of the proposed abstract model is conducted. The results show that all the arrival states meet the requirements of the probabilistic computational tree logic(PCTL) attribute definition formula. A high success rate between vehicles in short-range data communication transmission verifies the advantages of IEEE 802.11P protocol,which also ensures the survivability of vehicle networks. This model checking method also provides a research basis for communication link connectivity analysis in vehicle networks.
[1] ABBOUD K, OMAR H A, ZHUANG W H. Interworking of DSRC and cellular network technologies for V2X communications:a survey[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12):9457-9470.
[2] GHANDOUR A J, DI FELICE M, ARTAIL H, et al. Dissemination of safety messages in IEEE 802.11p/WAVE vehicular network:analytical study and protocol enhancements[J]. Pervasive and Mobile Computing, 2014, 11:3-18.
[3] LIM J H, KIM W, NAITO K, et al. Interplay between TVWS and DSRC:optimal strategy for safety message dissemination in VANET[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(11):2117-2133.
[4] LIM J H, NAITO K, YUN J H, et al. Reliable safety message dissemination in NLOS intersections using TV white spectrum[J]. IEEE Transactions on Mobile Computing,2018, 17(1):169-182.
[5] CHRISTY J M A, DEVA P M, JANAKIRAMAN S. Harris hawk optimization algorithm-based effective localization of non-line-of-sight nodes for reliable data dissemination in vehicular ad hoc networks[J]. International Journal of Communication Systems, 2020, 34(1):e4666.
[6] MUHAMMAD M, SAFDAR G A. Survey on existing authentication issues for cellular-assisted V2X communication[J]. Vehicular Communications, 2018, 12:50-65.
[7] HAKEEM S, KIM H. Multi-zone authentication and privacy-preserving protocol(MAPP)based on the bilinear pairing cryptography for 5G-V2X[J]. Sensors(Basel,Switzerland), 2021, 21(2):665.
[8] CHEN S Z, HU J L, SHI Y, et al. Vehicle-to-everything(V2X)services supported by LTE-based systems and 5G[J]. IEEE Communications Standards Magazine, 2017, 1(2):70-76.
[9] GAO Y, TAN C W, HUANG Y, et al. Characterization and optimization of delay guarantees for real-time multimedia traffic flows in IEEE 802.11 WLANs[J]. IEEE Transactions on Mobile Computing, 2016, 15(5):1090-1104.
[10] AKBAR M S, YU H N, CANG S. Delay, reliability, and throughput based QoS profile:a MAC layer performance optimization mechanism for biomedical applications in wireless body area sensor networks[J]. Journal of Sensors,2016, 2016:7170943.
[11] REZGUI J, CHERKAOUI S. About deterministic and nondeterministic vehicular communications over DSRC/802.11p[J]. Wireless Communications and Mobile Computing,2014, 14(15):1435-1449.
[12] ALMOHAMMEDI A A, NOORDIN N K, SALI A, et al.An adaptive multi-channel assignment and coordination scheme for IEEE 802.11P/1609.4 in vehicular ad-hoc networks[J]. IEEE Access, 2018, 6:2781-2802.
[13] YAO Y, ZHANG K L, ZHOU X S. A flexible multi-channel coordination MAC protocol for vehicular ad hoc networks[J]. IEEE Communications Letters, 2017, 21(6):1305-1308.
[14] JUSTIN GOPINATH A, NITHYA B. An optimal multichannel coordination scheme for IEEE 802.11p based Vehicular Adhoc Networks(VANETs)[C]//Proceedings of the2019 11th International Conference on Communication Systems&Networks(COMSNETS), January 7-11, 2019,Bengaluru, India. New York:IEEE Xplore, 2019:38-43.
[15] TEIXEIRA F A, ESILVA V F, LEONI J L, et al. Vehicular networks using the IEEE 802.11p standard:an experimental analysis[J]. Vehicular Communications, 2014, 1(2):91-96.
[16] BIANCHI G. Performance analysis of the IEEE 802.11 distributed coordination function[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(3):535-547.
[17] SONG C X. Performance analysis of the IEEE 802.11p multichannel MAC protocol in vehicular ad hoc networks[J]. Sensors(Basel, Switzerland), 2017, 17(12):2890.
[18] LI B Z, SUTTON G J, HU B, et al. Modeling and QoS analysis of the IEEE 802.11p broadcast scheme in vehicular ad hoc networks[J]. Journal of Communications and Networks, 2017, 19(2):169-179.
[19] GALLARDO J R, MAKRAKIS D, MOUFTAH H T. Mathematical analysis of EDCA′s performance on the control channel of an IEEE 802.11p WAVE vehicular network[J].EURASIP Journal on Wireless Communications and Networking, 2010, 2010:5.
[20] XIE Y, HO I W H, XIE L F. Stochastic modeling and analysis of unicast performance in 802.11p VANETs[C]//Proceedings of the 2015 10th International Conference on Information, Communications and Signal Processing(ICICS), December 2-4, 2015, Singapore. New York:IEEE Xplore, 2015:1-4.
[21] LI X, GUO J, ZHAO Y X, et al. Formal modeling and verifying the TTCAN protocol from a probabilistic perspective[J]. Journal of Circuits, Systems and Computers, 2019,28(10):1950177.
[22]王铭,王瑞,李晓娟,等.非确定性环境中移动机器人实时避障的概率模型检测[J].小型微型计算机系统,2014, 35(9):2104-2109.WANG M, WANG R, LI X J, et al. Proba bilistic model checking for real-time obstacle avoidance of mobile robot in a non-deterministic environment[J]. Journal of Chinese Computer Systems, 2014, 35(9):2104-2109.(in Chinese)
[23] KALNOOR G, SUBRAHMANYAM G. A review on applications of Markov decision process model and energy efficiency in wireless sensor networks[J]. Procedia Computer Science, 2020, 167:2308-2317.
[24] ANDR魪魪,DELAHAYE B, FOURNIER P. Consistency in parametric interval probabilistic timed automata[J]. Journal of Logical and Algebraic Methods in Programming,2020, 110:100459.
[25] PENG H X, LI D Z, ABBOUD K, et al. Performance analysis of IEEE 802. 11p DCF for multi platooning communications with autonomous vehicles[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3):2485-2498.
[26] PARK C W, CHOI B D. Performance analysis of MAC with DCF on CCH and reservation for multi-channel for IEEE 802.11p/1609.4 WAVE networks[J]. Quality Technology and Quantitative Management, 2015, 12(3):409-422.
[27] ALUR R, DILL D L. A theory of timed automata[J]. Theoretical Computer Science, 1994, 126(2):183-235.
[28] KAPUS T. Using PRISM model checker as a validation tool for an analytical model of IEEE 802.15.4 networks[J].Simulation Modelling Practice and Theory, 2017, 77:367-378.
[29] JOVANOVIC A, KWIATKOWSKA M, NORMAN G, et al.Symbolic optimal expected time reachability computation and controller synthesis for probabilistic timed automata[J].Theoretical Computer Science, 2017, 669:1-21.
[30] NORMAN G, PARKER D, SPROSTON J. Model checking for probabilistic timed automata[J]. Formal Methods in System Design, 2013, 43(2):164-190.
[31] ZHANG J H. Model checking probabilistic timed systems against timed automata specification[M]//JEONG H Y,OBAIDAT M S, YEN N Y, et al. Advances in Computer Science and its Applications. Berlin, Heidelberg:Springer,2014:1273-1278.
基本信息:
DOI:10.12194/j.ntu.20210225001
中图分类号:TN915.04;U495
引用信息:
[1]金丽,章国安,朱浩,等.车联网通信协议中随机退避机制的概率模型检测[J],2022,21(02):38-48.DOI:10.12194/j.ntu.20210225001.
基金信息:
国家自然科学基金面上项目(61971245)