46 | 0 | 56 |
下载次数 | 被引频次 | 阅读次数 |
为解决棉秆皮纤维精细化过程中强度受损的共性问题,研究了阳离子改性剂DETA辅助棉秆皮纤维单细胞定向剥离的可行性。利用DETA分子结构较大、在纤维束径向渗透慢的特点,实现纤维束表层阳离子化,从而使后续过氧化氢脱胶行为控制在纤维束外侧,减少纤维强度受损。研究发现:质量分数为9%的DETA可促进束纤维单细胞定向剥离。采用9%DETA方案获得的棉秆皮纤维细度可改善至19.6 dtex,强度保持在3.8 cN/dtex的较高水平,优于目前已报道的碱、碱/过氧化氢或微生物脱胶法。此外,XRD、红外、TG及单细胞形态分析结果证实:采用9%DETA方案得到的纤维内部胶质得以保留,而表面半纤维素及部分木质素被去除,表明单细胞是沿纤维束径向从外向内逐步剥离的。研究结果对富木质素纤维的提取和高值化利用具有一定的参考价值。
Abstract:To solve the problem of the fiber-strength loss during the extraction of cotton stalk fibers, the feasibility of the directional degumming on the cotton stalk fibers is studied with the assistance of cationic modifier DETA. With the help of the large molecular structure of the modifier and its low penetration rate in the radial fiber direction, the goal of surface cationic is achieved. Thus, the subsequent degumming behavior of hydrogen peroxide is controlled in the outer layer of the fiber bundles, and the damage of the fiber strength is reduced. The results show that directional degumming phenomenon of bundle fibers can be achieved by using a 9% modifier DETA. The fibers obtained have a fineness improved to 19.6 dtex and strength maintained at a high level of 3.8 cN/dtex, which are far better than the corresponding data achieved in the method of alkali, alkali/hydrogen peroxide and microbial degumming. In addition,the results of XRD, IR, TG and cell morphology show that the gum inside the fibers prepared with 9% DETA is retained,while the hemicellulose and partial of lignin substances are removed from the fiber surface. This phenomenon suggests that the single cells are stripped from the outer layer to the inner layer along the radial direction of the fiber bundles.The result can provide an important reference for the extraction and high-value utilization of the lignocellulosic fibers.
[1]朱倩倩,冉彤彤,许咏梅,等.棉花秸秆利用现状及其还田技术[J].农业科技通讯,2022(4):39-41.
[2] TWEBAZE C, ZHANG M L, ZHUANG X P, et al. Banana fiber degumming by alkali treatment and ultrasonic methods[J]. Journal of Natural Fibers, 2022:1-13.
[3] REDDY N, YANG Y Q. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks[J]. Bioresource Technology, 2009, 100(14):3563-3569.
[4]颜丹丹.不同提取方式对棉秆皮纤维性能的影响[J].中国纤检,2017(4):143-144.YAN D D. Effect of different treated method on properties of cotton stalk fiber[J]. China Fiber Inspection, 2017(4):143-144.(in Chinese)
[5] KAMBLI N, BASAK S, SAMANTA K K, et al. Extraction of natural cellulosic fibers from cornhusk and its physicochemical properties[J]. Fibers and Polymers, 2016, 17(5):687-694.
[6]杨震,孙斌,张玉高,等.高温脱胶对棉秆皮纤维成分与结构的影响[J].纺织学报,2009, 30(10):90-94.YANG Z, SUN B, ZHANG Y G, et al. Effect of high temperature degumming of cotton stalk bark fiber on its composition and structure[J]. Journal of Textile Research,2009, 30(10):90-94.(in Chinese)
[7] ZHOU L, SHAO J Z, FENG X X, et al. Effect of hightemperature degumming on the constituents and structure of cotton stalk bark fibers[J]. Journal of Applied Polymer Science, 2012, 125(Sup 2):E573-E579.
[8] DONG Z, HOU X L, HAIGLER I, et al. Preparation and properties of cotton stalk bark fibers and their cotton blended yarns and fabrics[J]. Journal of Cleaner Production,2016, 139:267-276.
[9]李成红,陈英,高艺.汉麻纤维的微生物-化学联合脱胶[J].印染,2020, 46(10):13-18.LI C H, CHEN Y, GAO Y. Degumming of hemp fiber with combination of microbes and chemicals[J]. China Dyeing&Finishing, 2020, 46(10):13-18.(in Chinese)
[10] WANG Q, CHEN H G, FANG G, et al. Isolation of bacillus cereus P05 and pseudomonas sp. X12 and their application in the ramie retting[J]. Industrial Crops and Products, 2017, 97:518-524.
[11]焦伟航,金海燕,李闯,等.工业大麻纤维复合酶脱胶工艺研究[J].毛纺科技,2022, 50(1):57-61.JIAO W H, JIN H Y, LI C, et al. Research on degumming process of industrial hemp fiber with compound enzyme[J]. Wool Textile Journal, 2022, 50(1):57-61.(in Chinese)
[12] LI J G, ZHANG S K, LI H L, et al. Cellulase pretreatment for enhancing cold caustic extrac tion-based separation of hemicelluloses and cellulose from cellulosic fibers[J]. Bioresource Technology, 2018, 251:1-6.
[13] XIE Z Y, TIAN Z J, LIU S, et al. Effects of different amounts of cellulase on the microstructure and soluble substances of cotton stalk bark[J]. Advanced Composites and Hybrid Materials, 2022, 5(2):1294-1306.
[14]李娜,董震,褚特野,等.微波辅助脱胶棉秆皮纤维的性能和潜在应用[J].产业用纺织品,2021, 39(4):30-37.LI N, DONG Z, CHU T Y, et al. Properties and potential applications of cotton stalk fibers degummed with microwave assistance[J]. Technical Textiles, 2021, 39(4):30-37.(in Chinese)
[15]董震,王海峰,赵志慧,等.一种基于阳离子化改性的麻型色纺纤维定向脱胶方法:CN112011836A[P]. 2020-12-01.
[16] FAN F W, ZHU M T, FANG K Y, et al. Comparative study on enhanced pectinase and alkali-oxygen degummings of sisal fibers[J]. Cellulose, 2021, 28(13):8375-8386.
[17] PALAMAE S, DECHATIWONGSE P, CHOORIT W, et al. Cellulose and hemicellulose recovery from oil palm empty fruit bunch(EFB)fibers and production of sugars from the fibers[J]. Carbohydrate Polymers, 2017, 155:491-497.
[18] DONG Z, HOU X L, SUN F F, et al. Textile grade long natural cellulose fibers from bark of cotton stalks using steam explosion as a pretreatment[J]. Cellulose, 2014, 21(5):3851-3860.
[19] HOU X L, ZHANG L, WIZI J, et al. Preparation and properties of cotton stalk bark fibers using combined steam explosion and laccase treatment[J]. Journal of Applied Polymer Science, 2017, 134(32):45058.
[20]李龙,季延.碱处理对棉秆皮纤维木质素的影响[J].纤维素科学与技术,2013, 21(3):70-72.LI L, JI Y. Effect of alkali treatment conditions on the lignin of fibers from cotton-straw[J]. Journal of Cellulose Science and Technology, 2013, 21(3):70-72.(in Chinese)
[21]高双凤,刘灿灿,李龙.碱、双氧水处理对棉秆皮纤维性能的影响[J].针织工业,2012(12):27-29.
[22]陈国强,李倩倩,朱亚楠.超声波脱胶对棉秆韧皮纤维成分与结构的影响[J].针织工业,2016(4):51-54.CHEN G Q, LI Q Q, ZHU Y N. Effect of ultrasonic degumming on ingredient and structure of cotton stalk bast fiber[J]. Knitting Industries, 2016(4):51-54.(in Chinese)
[23]高双凤,刘灿灿,李龙.硫酸溶液处理对棉秆皮纤维性能的影响[J].西安工程大学学报,2012, 26(6):705-708.GAO S F, LIU C C, LI L. The influence of sulfuric acid on the fiber of cotton-straw bark[J]. Journal of Xi′an Polytechnic University, 2012, 26(6):705-708.(in Chinese)
[24] HOU X L, SUN F F, ZHANG L, et al. Chemical-free extraction of cotton stalk bark fibers by steam flash explosion[J]. BioResources, 2014, 9(4):6950-6967.
[25]李龙,秦彩霞,孙超.棉秆皮纤维素纤维的梳理与细化[J].纺织学报,2017, 38(8):28-31.LI L, QIN C X, SUN C. Investigation on carding thinning of cotton-stalk bark cellulose fibers[J]. Journal of Textile Research, 2017, 38(8):28-31.(in Chinese)
[26]马延和,周成,薛燕芬.一种嗜碱芽孢杆菌在苎麻生物脱胶中的应用以及苎麻生物脱胶的方法:CN105780135B[P]. 2019-03-22.
[27]王刚,王海峰,管永华,等.阳离子固色剂DETA的应用性能[J].印染,2014, 40(22):15-19.WANG G, WANG H F, GUAN Y H, et al. Application performance of cationic fixing agent DETA[J]. Dyeing&Finishing, 2014, 40(22):15-19.(in Chinese)
[28]董爱学.提高与树脂界面复合性能的黄麻纤维酶促接枝疏水化改性研究[D].无锡:江南大学,2017.DONG A X. Investigation on the hydrophobic modification of jute fibers via enzymatic grafting for enhancing the interfacial properties with resins[D]. Wuxi:Jiangnan University, 2017.(in Chinese)
[29] LI L, LIU L, QIN C X. Study on the rotor spinning technology of cotton stalk bark fibres/cotton fibres[J]. Fibres and Textiles in Eastern Europe, 2018, 26(6):68-70.
[30]李国锋,王莉,于冉雪.长绒棉/棉秆皮纤维混纺纱的纺纱工艺及性能探讨[J].纺织科技进展,2020(2):8-9.LI G F, WANG L, YU R X. Spinning technology and properties of long-staple cotton/cotton stalk bark fibers blended yarns[J]. Progress in Textile Science&Technology, 2020(2):8-9.(in Chinese)
[31] FRENCH A D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose, 2014, 21(2):885-896.
[32] ILANGOVAN M, GUNA V, PRAJWAL B, et al. Extraction and characterisation of natural cellulose fibers from kigelia Africana[J]. Carbohydrate Polymers, 2020, 236:115996.
基本信息:
DOI:
中图分类号:TS102
引用信息:
[1]董震,丁姜鑫,刁平灏等.DETA促棉秆皮纤维单细胞定向剥离可行性探索[J],2022,21(04):35-43.
基金信息:
南通大学大学生创新项目(2022129);南通大学杏林学院大学生训练计划项目(201807)