nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 04, 23-30
一种基于深度学习的实体消歧技术
基金项目(Foundation): 国家自然科学基金项目(61602267);; 工业信息化部重点实验室开放基金项目(NJ2018014)
邮箱(Email):
DOI: 10.12194/j.ntu.20210507001
摘要:

传统的命名实体消歧技术通常依靠丰富的上下文语境和外部实体知识库,而很多新兴实体缺乏知识库且包含实体的文本长度较短,这些局限性使得传统算法不能够充分利用上下文的语义信息。另外,由于受有效样本数量的限制,算法最终应用的场景十分有限。基于上述问题,提出一种基于深度学习的结合BERT(bidirectional encoder representation from transformers)模型和长短期记忆神经网络的实体消歧方法。该方法主要包含以下几个部分:1)设计了一种基于BERT模型的词向量,通过较少的数据样本仍然可以获取较多的信息;2)为了让长短期记忆神经网络保留较多的有用信息和验证短文本以适用该方法,对句子样本进行切分;3)结合微软公司提出的NNI(neural network intelligence)技术,高效地获取较优的神经网络超参数。通过与其他不同类型的词向量和神经网络技术进行比较,验证了使用文中基于深度学习的实体消歧技术在F-Measure值评测指标上效果更好。

Abstract:

The traditional named entity disambiguation technology usually relies on rich context and knowledge of external entities. However, many emerging entities lack knowledge bases and the text containing entities is short. These limitations make traditional algorithms unable to make full use of contextual semantic information. At the same time,due to the limitation of the number of effective samples, the final application scenarios of the algorithm are very limited. Based on the above defects, this paper proposes a deep learning-based entity disambiguation method combining bidirectional encoder representation from transformers(BERT) model and long short-term memory neural network.The main work are the following parts: 1) A word vector based on the BERT model is designed to obtain more information through fewer data samples. 2) In order to allow the long short-term memory neural networks to retain useful information and verify that the short text applies to the method of this article, this method segments the sentence samples. 3) This article uses the neural network intelligence(NNI) technology proposed by Microsoft, which makes it possible to quickly and efficiently obtain the optimal neural network hyperparameter. This study compares other different types of word vectors and neural network technology, confirming that the F-Measure value of the entity disambiguation technology based on deep learning used in this paper is higher.

参考文献

[1]胡新辰.基于LSTM的语义关系分类研究[D].哈尔滨:哈尔滨工业大学,2015.

[2]张杨.基于领域知识图谱实体消歧的协同过滤推荐算法研究[D].天津:天津师范大学,2019.

[3]王博,杨沐昀,李生,等.中文全词消歧在机器翻译系统中的性能评测[J].自动化学报,2008, 34(5):535-541.

[4]左乃彻.基于维基百科的中英文命名实体消歧[D].北京:北京邮电大学,2015.

[5]邵发,黄银阁,周兰江,等.基于实体消歧的中文实体关系抽取[J].山东大学学报(工学版),2014, 44(6):32-37.

[6]宁博,张菲菲.基于异构知识库的命名实体消歧[J].西安邮电大学学报,2014, 19(4):70-76.

[7]高艳红,李爱萍,段利国.面向实体链接的多特征图模型实体消歧方法[J].计算机应用研究,2017, 34(10):2909-2914.

[8]马晓军,郭剑毅,王红斌,等.融合词向量和主题模型的领域实体消歧[J].模式识别与人工智能,2017, 30(12):1130-1137.

[9]周志华.机器学习[M].北京:清华大学出版社,2016:53-54.

[10] DEVLIN J, CHANG M, LEE K, et al. BERT:pre-training of deep bidirectional transformers for language understanding[DB/OL].(2019-05-24)[2021-04-07]. https://arxiv.org/abs/1810.04805v2.

[11]吴炎,王儒敬.基于BERT的语义匹配算法在问答系统中的应用[J].仪表技术,2020(6):19-22.

[12] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.

[13] Microsoft.概述:支持神经网络结构搜索、模型压缩、超参调优的开源自动机器学习工具(NNI v1.8)[EB/OL].(2020-09-08)[2021-04-07]. https://nni.readthedocs.io/zh/latest/contents.html.

[14] Github. jieba[EB/OL].(2020-02-15)[2021-04-07]. https://github.com/fxsjy/jieba/.

[15] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[DB/OL].(2013-10-16)[2021-04-07]. https://arxiv.org/abs/1310.4546.

[16] VALUEVA M V, NAGORNOV N N, LYAKHOV P A, et al. Application of the residue number system to reduce hardware costs of the convo lutional neural network implementation[J]. Mathematics and Computers in Simulation,2020, 177:232-243.

[17]赵军.命名实体识别、排歧和跨语言关联[J].中文信息学报,2009, 23(2):3-17.

[18]温萍梅,叶志炜,丁文健,等.命名实体消歧研究进展综述[J].数据分析与知识发现,2020, 4(9):15-25.

[19] HOFFART J, YOSE M A, BORDINO I, et al. Robust disambiguation of named entities in text[DB/OL].(2011-07-27)[2021-04-07]. https://dl.acm.org/doi/abs/10.5555/2145432.2145521.

[20]怀宝兴,宝腾飞,祝恒书,等.一种基于概率主题模型的命名实体链接方法[J].软件学报,2014, 25(9):2076-2087.

[21] ZHANG W, SU J, TAN C L, et al. Entity linking leveraging automatically generated annotation[C]//The 23rd International Conference on Computational Linguistics Proceedings of the Main Conference(Volume 2). Beijing:Tsinghua University Press, 2010:619-627.

[22]李广一,王厚峰.基于多步聚类的汉语命名实体识别和歧义消解[J].中文信息学报,2013, 27(5):29-34.

[23]谭咏梅,杨雪.结合实体链接与实体聚类的命名实体消歧[J].北京邮电大学学报,2014, 37(5):36-40.

[24] HAN X P, SUN L. A generative entity-mention model for linking entities with knowledge base[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2011:945-954.

[25] MEIJ E, BRON M, HOLLINK L, et al. Mapping queries to the Linking Open Data cloud:a case study using DBpedia[J]. Journal of Web Semantics, 2011, 9(4):418-433.

[26] CUCERZAN S. Large-scale named entity disambiguation based on wikipedia data[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.Prague:Association for Computational Linguistics, 2007:708-716.

[27] ALHELBAWY A, GAIZAUSKAS R. Named entity disambiguation using HMMs[C]//Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, November 17-20, 2013, Atlanta, GA, USA. Now York:IEEE Xplore, 2013:159-162.

[28] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[DB/OL].(2013-09-07)[2021-04-07]. https://arxiv.org/abs/1301.3781v3.

基本信息:

DOI:10.12194/j.ntu.20210507001

中图分类号:TP391.1;TP18

引用信息:

[1]文万志,姜文轩,葛威等.一种基于深度学习的实体消歧技术[J],2021(04):23-30.DOI:10.12194/j.ntu.20210507001.

基金信息:

国家自然科学基金项目(61602267);; 工业信息化部重点实验室开放基金项目(NJ2018014)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文