124 | 2 | 81 |
下载次数 | 被引频次 | 阅读次数 |
通过建立新的杂合控制协议,研究了带状态依赖切换项的分数阶复值神经网络的有限时间同步问题。通过恰当的Lyapunov函数及不等式放缩技巧,给出了此类分数阶复值神经网络的有限时间同步判据。所给出的同步判据是建立在非分离法的基础上,无需将文中的复值系统分离成两个实值系统来讨论,所得结果更符合复值网络本身的意义。最后,通过数值仿真验证了本文所得同步结果的有效性。所构建的杂合控制协议可应用于带状态切换的其他网络模型,能有效解决网络系统跳变不确定性给同步研究带来的难题。
Abstract:In this study, finite-time synchronization of fractional-order complex-valued neural networks with statedependent switching items is investigated through the establishment of a novel hybrid control protocol. The developed hybrid control protocol can be applied to other network models with state switching, effectively addressing the challenges posed by the transitional uncertainties in network systems. Sufficient criteria for finite-time synchronization of such fractional-order complex-valued neural networks are provided using an appropriate Lyapunov function and inequality scaling techniques. These synchronization criteria are based on a non-separation method, eliminating the need to divide the complex-valued system into two real-valued systems for analysis, thus more accurately reflecting the essence of complex-valued networks. The effectiveness of the obtained synchronization results is validated through numerical simulations.
[1] HOPPENSTEADT F C, IZHIKEVICH E M. Pattern recognition via synchronization in phase-locked loop neural networks[J]. IEEE Transactions on Neural Networks, 2000, 11(3):734-738.
[2] LI X D, RAKKIYAPPAN R. Impulsive con troller design for exponential synchronization of chaotic neural networks with mixed delays[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(6):1515-1523.
[3] SHEN H, ZHU Y Z, ZHANG L X, et al. Extended dissipative state estimation for Markov jump neural networks with unreliable links[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(2):346-358.
[4] PRAKASH M, BALASUBRAMANIAM P, LAKSHMANAN S. Synchronization of Markovian jumping inertial neural networks and its applications in image encryption[J]. Neural Networks, 2016, 83:86-93.
[5] WANG W T. Finite-time synchronization for a class of fuzzy cellular neural networks with time-varying coefficients and proportional delays[J]. Fuzzy Sets and Systems, 2018, 338:40-49.
[6] TANG R Q, YANG X S, WAN X X. Finite-time cluster synchronization for a class of fuzzy cellular neural networks via non-chattering quantized controllers[J]. Neural Networks, 2019, 113:79-90.
[7] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Preface[M]//Theory and Applications of Fractional Differential Equations. Amsterdam:Elsevier, 2006:vii-x.
[8] CHEN J J, ZENG Z G, JIANG P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks[J]. Neural Networks, 2014, 51:1-8.
[9] LI H L, ZHANG L, HU C, et al. Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge[J]. Journal of Applied Mathematics and Computing,2017, 54(1):435-449.
[10] SYED ALI M, NARAYANAN G, SAROHA S, et al. Finite-time stability analysis of fractional-order memristive fuzzy cellular neural networks with time delay and leakage term[J]. Mathematics and Computers in Simulation, 2021,185:468-485.
[11] MANI P, RAJAN R, SHANMUGAM L, et al. Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption[J].Information Sciences, 2019, 491:74-89.
[12] ZHENG M W, LI L X, PENG H P, et al. Finite-time stability and synchronization of memristor-based fractionalorder fuzzy cellular neural networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 59:272-291.
[13] CHUA L. Memristor:the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5):507-519.
[14] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191):80-83.
[15] ZHANG G D, ZENG Z G, NING D. Novel results on synchronization for a class of switched inertial neural networks with distributed delays[J]. Information Sciences, 2020,511:114-126.
[16] HIROSE A. Applications of complex-valued neural networks to coherent optical computing using phase-sensitive detection scheme[J]. Information Sciences-Applications,1994, 2(2):103-117.
[17] NITTA T. Orthogonality of decision boundaries in complex-valued neural networks[J]. Neural Computation, 2004,16(1):73-97.
[18] CHEN J J, CHEN B S, ZENG Z G. Global asymptotic stability and adaptive ultimate mittag-lef fler synchronization for a fractional-order complex-valued memristive neural networks with delays[J]. IEEE Transactions on Systems,Man, and Cybernetics:Systems, 2019, 49(12):2519-2535.
[19] LI X F, FANG J N, LI H Y. Master-slave exponential synchronization of delayed complex-valued memristorbased neural networks via impulsive control[J]. Neural Networks, 2017, 93:165-175.
[20] WANG L M, SONG Q K, LIU Y R, et al. Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with both leakage and timevarying delays[J]. Neurocomputing, 2017, 245:86-101.
[21] FENG L, YU J, HU C, et al. Nonseparation methodbased finite/fixed-time synchronization of fully complexvalued discontinuous neural networks[J]. IEEE Transactions on Cybernetics, 2021, 51(6):3212-3223.
[22] ZHENG B B, HU C, YU J, et al. Finite-time synchronization of fully complex-valued neural networks with fractional-order[J]. Neurocomputing, 2020, 373:70-80.
[23] PENG X, WU H Q, SONG K, et al. Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays[J]. Neural Networks, 2017, 94:46-54.
基本信息:
DOI:10.12194/j.ntu.20221208002
中图分类号:O175;TP183
引用信息:
[1]朱佳庆,姚宇,张国东.一类分数阶复值神经网络的有限时间同步[J].南通大学学报(自然科学版),2023,22(04):62-68.DOI:10.12194/j.ntu.20221208002.
基金信息:
国家自然科学基金面上项目(61976228);; 湖北省自然科学基金面上项目(2019CFB618)