118 | 0 | 78 |
下载次数 | 被引频次 | 阅读次数 |
针对一类由偏微分方程建模的多智能体系统一致性控制问题,提出了一类空间边界耦合方法。边界耦合方法与传统的状态耦合方法相比具有更为灵活和有效的特性。首先,研究了2种不同的Neumann边界耦合形式:同位边界耦合和异位边界耦合,这2种耦合形式为多智能体系统提供了更为多样化的协作机制。然后,在控制设计中引入状态观测器来对系统状态进行预估,状态观测器能有效地捕捉系统动态,并在一定程度上减少由于信息传递延迟而带来的负面影响。同时采用Lyapunov理论和积分不等式方法来保证系统的观测误差和一致性误差以指数形式收敛,得出在2种边界耦合下系统一致性的2个充分条件。最后,通过2个具体的例子验证了所提出的空间边界耦合方法的有效性。实验结果表明:在不同的边界耦合形式下,多智能体系统均能实现较好的一致性控制,进一步证明了边界耦合在多智能体系统中的潜在应用价值。
Abstract:A spatial boundary coupling approach is developed for consensus control in multi-agent systems governed by partial differential equations, demonstrating enhanced flexibility and efficiency relative to conventional state coupling techniques. Two Neumann boundary coupling variants — isostatic and heterotopic — are analyzed, each facilitating distinct cooperative interactions among agents. A state observer is incorporated into the control framework to estimate system states, capturing dynamic behavior and attenuating the effects of information transmission delays. Lyapunov theory and integral inequalities are applied to establish exponential convergence of observation and consensus errors,yielding two sufficient conditions for achieving consensus under the respective coupling schemes. Validation is conducted through two examples, with experimental outcomes confirming effective consensus across both coupling configurations, highlighting the applicability of boundary coupling to multi-agent systems.
[1] SHOBOLE A A, WADI M. Multiagent systems application for the smart grid protection[J]. Renewable and Sustainable Energy Reviews, 2021, 149:111352.
[2] AN L W, YANG G H. Distributed optimal coordination for heterogeneous linear multiagent systems[J]. IEEE Transactions on Automatic Control, 2022, 67(12):6850-6857.
[3] YANG X J, LIAO L J, YANG Q, et al. Limited-energy output formation for multiagent systems with intermittent interactions[J]. Journal of the Franklin Institute, 2021,358(13):6462-6489.
[4] LIU T F, QIN Z Y, HONG Y G, et al. Distributed optimization of nonlinear multiagent systems:a small-gain approach[J]. IEEE Transactions on Automatic Control, 2022,67(2):676-691.
[5]曹科才,顾菊平,华亮,等.多智能体系统采样协调控制:从线性到非线性[J].南通大学学报(自然科学版),2020, 19(4):1-15.CAO K C, GU J P, HUA L, et al. Sampled-data cooperative control of multi-agent systems:from linear system to nonlinear system[J]. Journal of Nantong University(Natural Science Edition), 2020, 19(4):1-15.(in Chinese)
[6] PANTELEEV A, KARANE M. Application of a novel multi-agent optimization algorithm based on PID controllers in stochastic control problems[J]. Mathematics, 2023, 11(13):2903.
[7] BABAZADEH H, BARADARANNIA M, HASHEMZADEH F. Event-triggered surrounding adaptive control of nonlinear multi-agent systems[J]. ISA Transactions, 2022, 128:44-57.
[8] MOSTAANI A, VU T X, CHATZINOTAS S, et al. Taskeffective compression of observations for the centralized control of a multiagent system over bit-budgeted channels[J]. IEEE Internet of Things Journal, 2024, 11(4):6131-6143.
[9] QIN D D, JIN Z H, LIU A D, et al. Event-triggered distributed predictive cooperation control for multi-agent systems subject to bounded disturbances[J]. Automatica,2023, 157:111230.
[10] ZHAO L R, WU H Q, CAO J D. Event-triggered boundary consensus control for multi-agent systems of fractional reaction-diffusion PDEs[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 127:107538.
[11] MAN J T, SHENG Y, CHEN C Y, et al. PDE-based finite-time deployment of heterogeneous multi-agent systems subject to multiple asynchronous semi-Markov chains[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2024, 71(2):885-897.
[12] SONG X N, SUN X L, SONG S, et al. Secure consensus control for PDE-based multiagent systems resist hybrid attacks[J]. IEEE Systems Journal, 2023, 17(2):3047-3058.
[13]耿晓鹏,吕晓晓.受脉冲扰动的多智能体系统的有限时间平均一致性[J].南通大学学报(自然科学版),2023,22(4):79-86.GENG X P, LüX X. Finite-time average consensus for multi-agent systems under impulsive disturbances[J]. Journal of Nantong University(Natural Science Edition), 2023,22(4):79-86.(in Chinese)
[14]曹志斌,翁扬锦,王建琦,等.基于固定时间干扰观测器的多智能体分布式保性能包含控制[J].桂林航天工业学院学报,2023, 28(2):165-172.CAO Z B, WENG Y J, WANG J Q, et al. Prescribed performance-based distributed containment control of multi-agent systems with fixed-time observer[J]. Journal of Guilin University of Aerospace Technology, 2023, 28(2):165-172.(in Chinese)
[15] CAO L, PAN Y N, LIANG H J, et al. Observer-based dynamic event-triggered control for multiagent systems with time-varying delay[J]. IEEE Transactions on Cybernetics, 2023, 53(5):3376-3387.
[16]李力厚,李杰,王书义.基于间歇单点测量的PDE系统观测器设计及应用[J].控制工程,2023, 30(3):536-542.LI L H, LI J, WANG S Y. Observer design for PDE system based on intermittent pointwise measurement and its application[J]. Control Engineering of China, 2023, 30(3):536-542.(in Chinese)
[17] HE W N, GUO W L, SHI L L, et al. Stochastic fixedtime formation for nonlinear multi-agent systems under a discontinuous protocol[J]. International Journal of Robust and Nonlinear Control, 2022, 32(10):5881-5896.
[18] NIEKAMP R, NIEMANN J, SCHR魻DER J. A surrogate model for the prediction of permeabilities and flow through porous media:a machine learning approach based on stochastic Brownian motion[J]. Computational Mechanics,2023, 71(3):563-581.
[19] LIU M Y, XIE J, KAO Y G. Stochastic bounded consensus for multi-agent systems with fractional Brownian motions via sliding mode control[J]. Applied Mathematics and Computation, 2023, 446:127879.
[20] LIN B, LUO S X, JIANG Y. Mean-square output consensus of heterogeneous multi-agent systems with multiplicative noises in dynamics and measurements[J]. Journal of Systems Science and Complexity, 2023, 36(6):2364-2381.
[21] WANG J W. Observer-based boundary control of semilinear parabolic PDEs with non-collocated distributed event-triggered observation[J]. Journal of the Franklin Institute, 2019, 356(17):10405-10420.
[22] YANG C D, LI Z X, CHEN X Y, et al. Boundary control for exponential synchronization of reaction-diffusion neural networks based on coupled PDE-ODEs[J]. IFAC-PapersOnLine, 2020, 53(2):3415-3420.
[23] GUO S Y, ZHAO X D, WANG H Q, et al. Distributed consensus of heterogeneous switched nonlinear multiagent systems with input quantization and DoS attacks[J]. Applied Mathematics and Computation, 2023, 456:128127.
[24] LI Y M, LI K W, TONG S C. An observer-based fuzzy adaptive consensus control method for nonlinear multiagent systems[J]. IEEE Transactions on Fuzzy Systems, 2022,30(11):4667-4678.
[25] WU X Q, MAO B, WU X Q, et al. Dynamic event-triggered leader-follower consensus control for MultiAgent systems[J]. SIAM Journal on Control and Optimization, 2022,60(1):189-209.
[26] LIU S L, NIU B, KARIMI H R, et al. Self-triggered fixed-time bipartite fault-tolerant consensus for nonlinear multiagent systems with function constraints on states[J].Chaos, Solitons&Fractals, 2024, 178:114367.
[27]蒋文芳,刘恒.基于状态估计的分数阶线性系统同步控制[J].南通大学学报(自然科学版),2023, 22(4):43-49.JIANG W F, LIU H. Synchronization control of fractional order linear systems based on state estimation[J]. Journal of Nantong University(Natural Science Edition), 2023, 22(4):43-49.(in Chinese)
[28] YAN X, YANG C D, CAO J D, et al. Boundary consensus control strategies for fractional-order multi-agent systems with reaction-diffusion terms[J]. Information Sciences,2022, 616:461-473.
[29] YANG C H, YANG C D, HU C, et al. Two boundary coupling approaches for synchronization of stochastic reaction-diffusion neural networks based on semi-linear PIDEs[J]. Journal of the Franklin Institute, 2022, 359(18):10813-10830.
[30] WANG F, ZHANG C, YANG Y Q, et al. Observer-based consensus of fractional order parabolic PDEs agents on directed networks via boundary communication[J]. Chaos,Solitons&Fractals, 2023, 170:113332.
基本信息:
DOI:10.12194/j.ntu.20240722001
中图分类号:TP13
引用信息:
[1]万兴龙,杨成东,李振兴等.一类基于观测器的多智能体系统一致性边界耦合方法[J].南通大学学报(自然科学版),2025,24(01):40-50.DOI:10.12194/j.ntu.20240722001.
基金信息:
国家自然科学基金面上基金项目(62476117); 云南省科技厅科技发展计划项目(202302AD080006); 山东省自然科学基金项目(ZR2022MF222)