232 | 16 | 20 |
下载次数 | 被引频次 | 阅读次数 |
仿照次正交矩的定义方法,给出了K-次正交矩阵的概念,讨论了K-次正交矩阵的基本性质,研究了K-次正交矩阵的伴随矩阵、转置矩阵、次转置矩阵、全转置矩阵以及其它分块矩阵的相关性质,得出了一些新的结果.
Abstract:Referring to the methods of defining sub-orthogonal matrix,we give the concept of K-quasi-sub-orthogonal matrix and obtain the properties of its generalized matrices.Moreover,we examine respectively the properties of the K-anti-sub-orthogonal matrices which are the special cases of K-sub-orthogonal matrix and present the relations among these generalized matrices.
[1]秦兆华.矩阵的次转置及实次对称矩阵的次正定性[J].渝州大学学报:自然科学版,1994,11(1):14-18.
[2]袁晖坪.次正交矩阵与次对称矩阵[J].西南师范大学学报:自然科学版,1998,23(2):147-151.
[3]王文惠.关于次正交矩阵[J].渝州大学学报:自然科学版,1998,15(2):11-15.
[4]陈琳.亚次正交矩阵及性质[J].周口师范学院学报,2004,21(5):28-30.
[5]许永平,石小平.正交矩阵的充要条件与O-正交矩阵的性质[J].南京林业大学学报:自然科学版,2005,29(2):54-56.
基本信息:
DOI:
中图分类号:O151.21
引用信息:
[1]刘玉,蔡乌芳.K-次正交矩阵及其性质[J].南通大学学报(自然科学版),2009,8(01):72-75.
基金信息: