337 | 0 | 51 |
下载次数 | 被引频次 | 阅读次数 |
针对微型压电机器人运动模式单一的问题,本研究提出一种基于压电驱动的微型水陆两栖爬行机器人。该机器人通过压电陶瓷的逆压电效应激发机器人躯干的多种振动模态,分别利用接触摩擦和射流实现地面爬行和水面游动,从而具备两栖运动能力。该机器人采用单相激励信号驱动,通过紧凑型结构设计即可实现地面和水中的双重运动功能。基于有限元分析软件Ansys 19.0建立了机器人有限元模型,对其结构设计和工作原理进行了系统分析,并确定了最优工作模态。然后制作了机器人原理样机并进行性能测试,结果表明:在驱动频率为17.0 kHz、电压(峰-峰值)为100 V的条件下,机器人最大爬行速度可达130 mm/s,相当于6.5倍体长每秒;在驱动频率为227.0 kHz、电压(峰-峰值)为100 V的条件下,机器人水面平均运动速度为50 mm/s,达到2.5倍体长每秒。有限元仿真与实验测试结果的一致性验证了所提机器人结构设计的可行性和工作原理的正确性。
Abstract:To address the limitation of single-mode motion in micro piezoelectric robots, this study proposes a piezoelectric-driven micro amphibious crawling robot. The robot utilizes the inverse piezoelectric effect of piezoelectric ceramics to excite multiple vibration modes of its body, enabling both terrestrial crawling via contact friction and aquatic swimming via jet flow, thus achieving amphibious locomotion. A compact structure driven by a single-phase excitation signal allows dual-mode motion on land and in water. Finite element modeling was conducted using Ansys 19.0to analyze the robot′s structural design, operating principle, and optimal working modes. A prototype was fabricated and experimentally tested. At a driving frequency of 17.0 kHz and a peak-to-peak voltage of 100 V, the robot achieved a maximum crawling speed of 130 mm/s, equivalent to 6.5 body lengths per second. At 227.0 kHz and the same voltage, its average swimming speed on the water surface reached 50 mm/s, or 2.5 body lengths per second. The consistency between simulation and experimental results verifies the feasibility of the proposed structural design and confirms the validity of the operating principle.
[1] LI J, DENG J, ZHANG S J, et al. Developments and challenges of miniature piezoelectric roobts:a review[J].Advanced Science, 2023, 10(36):2305128.
[2] WANG Y B, DU X Z, ZHANG H M, et al. Amphibious miniature soft jumping robot with on-demand in-flight maneuver[J]. Advanced Science, 2023, 10(18):2207493.
[3] ZHAO Y, HONG Y Y, QI F J, et al. Self-sustained snapping drives autonomous dancing and motion in freestanding wavy rings[J]. Advanced Materials, 2023, 35(7):2207372.
[4] NG C S X, TAN M W M, XU C Y, et al. Locomotion of miniature soft robots[J]. Advanced Materials, 2021, 33(19):2003558.
[5] TANG C, DU B Y, JIANG S W, et al. A pipeline inspection robot for navigating tubular environments in the subcentimeter scale[J]. Science Robotics, 2022, 7(66):eabm8597.
[6] HUANG X N, KUMAR K, JAWED M K, et al. Chasing biomimetic locomotion speeds:creating untethered soft robots with shape memory alloy actuators[J]. Science Robotics, 2018, 3(25):eaau7557.
[7] LEE H T, SEICHEPINE F, YANG G Z. Microtentacle actuators:microtentacle actuators based on shape memory alloy smart soft composite(adv. funct. mater. 34/2020)[J].Advanced Functional Materials, 2020, 30(34):2070231.
[8] REN Z J, KIM S, JI X, et al. A high-lift micro-aerialrobot powered by low-voltage and long-endurance dielectric elastomer actuators[J]. Advanced Materials, 2022, 34(7):2106757.
[9] CHEN Y F, ZHAO H C, MAO J, et al. Controlled flight of a microrobot powered by soft artificial muscles[J]. Nature, 2019, 575(7782):324-329.
[10] GUO Y G, LIU L W, LIU Y J, et al. Review of dielectric elastomer actuators and their applications in soft robots[J].Advanced Intelligent Systems, 2021, 3(10):2000282.
[11] WU S, HONG Y Y, ZHAO Y, et al. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation[J]. Science Advances, 2023, 9(12):eadf8014.
[12] ZHANG J C, SOON R H, WEI Z H, et al. Liquid metalelastomer composites with dual-energy transmission mode for multifunctional miniature untethered magnetic robots[J].Advanced Science, 2022, 9(31):2203730.
[13] WANG X Q, CHAN K H, CHENG Y, et al. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility[J]. Advanced Materials, 2020, 32(21):2000351.
[14] SITTI M, WIERSMA D S. Pros and cons:magnetic versus optical microrobots[J]. Advanced Materials, 2020, 32(20):1906766.
[15] CHANG Q B, GAO X, LIU Y X, et al. Development of a cross-scale 6-DOF piezoelectric stage and its application in assisted puncture[J]. Mechanical Systems and Signal Processing, 2022, 174:109072.
[16] YANG T, AN H T, TANG X F, et al. A novel multi-asperity-based dynamic(MABD)model for piezoelectric actuator:theory, numerical framework, and experimental validation[J]. Applied Mathematical Modelling, 2025, 140:115876.
[17] QI R, GE Y N, WANG L, et al. Electromechanical-coupling modeling and experimental validation of piezoelectric active vibration isolation for truss structures[J]. Mechanical Systems and Signal Processing, 2025, 224:112178.
[18] ZHANG S, WANG L, ZHAO Z H, et al. Two-dimensional electromechanical-coupling modeling for out-of-plane bending vibration of cross-type beams[J]. International Journal of Mechanical Sciences, 2024, 274:109273.
[19] HARIRI H H, SOH G S, FOONG S, et al. Locomotion study of a standing wave driven piezoelectric miniature robot for bi-directional motion[J]. IEEE Transactions on Robotics, 2017, 33(3):742-747.
[20] PENG H M, YANG J Z, LU X L, et al. A lightweight surface milli-walker based on piezoelectric actuation[J].IEEE Transactions on Industrial Electronics, 2019, 66(10):7852-7860.
[21] CHEN Y F, DOSHI N, GOLDBERG B, et al. Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot[J].Nature Communications, 2018, 9:2495.
[22] CHIANG E T K, URAKUBO T, MASHIMO T. Lift generation by a miniature piezoelectric ultrasonic motor-driven rotary-wing for pico air vehicles[J]. IEEE Access, 2022,10:13210-13218.
[23] SUZUKI H, WOOD R J. Origami-inspired miniature manipulator for teleoperated microsurgery[J]. Nature Machine Intelligence, 2020, 2(8):437-446.
[24] JAYARAM K, SHUM J, CASTELLANOS S, et al. Scaling down an insect-size microrobot, HAMR-VI into HAMR-jr[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation(ICRA), May 31-August 31, 2020, Paris, France. New York:IEEE Xplore,2020:10305-10311.
[25] BAISCH A T, OZCAN O, GOLDBERG B, et al. High speed locomotion for a quadrupedal microrobot[J]. The International Journal of Robotics Research, 2014, 33(8):1063-1082.
基本信息:
DOI:10.12194/j.ntu.20241229001
中图分类号:TP242
引用信息:
[1]王乐,王欣,费森杰等.一种基于压电驱动的微型水陆两栖爬行机器人[J].南通大学学报(自然科学版),2025,24(02):64-69.DOI:10.12194/j.ntu.20241229001.
基金信息:
浙江省教育厅一般科研项目(Y202352861); 湖州职业技术学院高层次人才专项课题(2023TS06)