nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 04, v.22;No.87 87-94
基于闪耀光栅复型的SERS基底制备及其在农药检测中的应用
基金项目(Foundation): 国家自然科学基金青年科学基金项目(61601249)
邮箱(Email): wangcn@ntu.edu.cn;
DOI:
摘要:

表面增强拉曼散射(surface enhanced Raman scattering,SERS)可以提供分子的指纹信息,是分子检测和分析的重要工具。具有高灵敏度和高均匀性的大面积柔性透明SERS基底的制备对促进SERS技术在原位检测领域的应用发展具有重要意义。闪耀光栅表面具有规则的周期性锯齿状结构,是优良的SERS衬底材料,但是有关闪耀光栅用于SERS基底制备的研究却鲜有报道。为了简单、经济地获得具有优良SERS性能的大面积基底,以闪耀光栅为模板,采用柔性透明的聚二甲基硅氧烷(PDMS)复制其表面立体结构,并通过蒸镀法在具有光栅结构的PDMS表面生长Ag纳米结构从而获得具有SERS活性的Ag/PDMS基底。研究结果表明,蒸镀时间为30 min时所制备的Ag/PDMS基底中Ag纳米颗粒之间形成了大量的缝隙热点结构,在入射光的激发下可产生极强的局域电场,因此呈现最佳的增强性能,其增强因子约为7.45×106。同时该基底呈现良好的均匀性,结晶紫1 162 cm-1处拉曼峰的RSD仅为4.24%,可满足实际应用的需求。最后,该基底成功实现了苹果表面福美双农药分子的原位快速检测。基于闪耀光栅制备的柔性SERS基底具有良好的灵敏度和均匀性,可以通过贴附的方式对不规则形状固体表面的目标分子进行检测,在果蔬表面农药残留的检测等食品安全领域具有广阔的应用前景。

Abstract:

Surface enhanced Raman scattering(SERS) provides fingerprint information of molecules and is a vital tool for molecular detection and analysis. The preparation of large-area, highly sensitive, and uniform flexible transparent SERS substrates is crucial for advancing the application of SERS technology in in-situ detection. Blazed gratings, with their regular periodic sawtooth-like structures, serve as excellent SERS substrate materials. However, studies on the use of blazed gratings for SERS substrate preparation are limited. To acquire large-area substrates with excellent SERS performance in a simple and cost-effective manner, blazed gratings were used as templates. The surface stereostructure was replicated using flexible and transparent polydimethylsiloxane(PDMS), and Ag nanostructures were then grown on the PDMS surfaces with grating structures via vapor deposition, resulting in SERS-active Ag/PDMS substrates. The study shows that the Ag/PDMS substrates prepared with a 30-minute vapor deposition exhibit optimal enhancement performance, with an enhancement factor of about 7.45 × 106. This is attributed to the formation of numerous gap hotspots between Ag nanoparticles, generating a strong local electric field under incident light.Additionally, these substrates demonstrate excellent uniformity, with a relative standard deviation(RSD) of only 4.24%at the 1 162 cm-1 Raman peak of crystal violet, meeting the practical application requirements. Finally, these substrates successfully achieved rapid in-situ detection of thiram pesticide molecules on apple surfaces. The flexible SERS substrates based on blazed gratings, with their high sensitivity and uniformity, have broad application prospects in food safety, such as detecting pesticide residues on fruit and vegetable surfaces, by adhering to irregularly shaped solid surfaces for target molecule detection.

参考文献

[1] HADDAD A, COMANESCU M A, GREEN O, et al. Detection and quantitation of trace fentanyl in heroin by surface-enhanced Raman spectroscopy[J]. Analytical Chemistry, 2018, 90(21):12678-12685.

[2] HUANG T X, HUANG S C, LI M H, et al. Tip-enhanced Raman spectroscopy:tip-related issues[J]. Analytical and Bioanalytical Chemistry, 2015, 407(27):8177-8195.

[3]王凯悦,邵心依,顾学芳,等.金银球腔阵列基底用于莱克多巴胺的SERS竞争免疫分析[J].南通大学学报(自然科学版),2022, 21(4):57-63.WANG K Y, SHAO X Y, GU X F, et al. Fabrication of Au/Ag bimetallic cavity array substrates and their application in SERS-based competitive immunoassay for ractopamine[J]. Journal of Nantong University(Natural Science Edition), 2022, 21(4):57-63.(in Chinese)

[4] KIM J, SIM K, CHA S, et al. Single-particle analysis on plasmonic nanogap systems for quantitative SERS[J]. Journal of Raman Spectroscopy, 2021, 52(2):375-385.

[5] DING S Y, YI J, LI J F, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 2016, 1:16021.

[6] WANG K Q, SUN D W, PU H B, et al. Shell thicknessdependent Au@Ag nanoparticles aggregates for high-performance SERS applications[J]. Talanta, 2019, 195:506-515.

[7] CHOWDHURY E, RAHAMAN M S, SATHITSUKSANOH N, et al. DNA-induced assembly of gold nanoprisms and polystyrene beads into 3D plasmonic SERS substrates[J].Nanotechnology, 2021, 32(2):025506.

[8] ZHANG P, LIU G Q, FENG S J, et al. Engineering of flexible granular Au nanocap ordered array and its surface enhanced Raman spectroscopy effect[J]. Nanotechnology,2020, 31(3):035303.

[9] LI K G, WANG Y, JIANG K, et al. Free-standing Ag triangle arrays a configurable vertical gap for surface enhanced Raman spectroscopy[J]. Nanotechnology, 2017, 28(38):385401.

[10] NAM N N, BUI T L, SON S J, et al. Ultrasonication-induced self-assembled fixed nanogap ar rays of monomeric plasmonic nanoparticles inside nanopores[J]. Advanced Functional Materials, 2019, 29(12):1809146.

[11] SHI G C, WANG M L, ZHU Y Y, et al. Nanoflower-like Ag/AAO SERS platform with quasi-photonic crystal nanostructure for efficient detection of goat serum[J]. Current Applied Physics, 2019, 19(11):1276-1285.

[12] CHAMUAH N, SAIKIA A, JOSEPH A M, et al. Blu-ray DVD as SERS substrate for reliable detection of albumin,creatinine and urea in urine[J]. Sensors and Actuators B:Chemical, 2019, 285:108-115.

[13] CHEN J, HUANG M Z, KONG L L. Flexible Ag/nanocellulose fibers SERS substrate and its applications for in situ hazardous residues detection on food[J]. Applied Surface Science, 2020, 533:147454.

[14] MA Y, CHEN Y, TIAN Y R, et al. Contrastive study of in situ sensing and swabbing detection based on SERS-active gold nanobush-PDMS hybrid film[J]. Journal of Agricultural and Food Chemistry, 2021, 69(6):1975-1983.

[15] THIRUMALAIRAJAN S, GIRIJA K. Efficient and tunable shape selective synthesis of Ag/CeO2nanostructures modified highly stable SERS substrate for ultrasensitive detection of pesticides on the surface of an apple[J]. Nanoscale Advances, 2020, 2(8):3570-3581.

[16] PILOT R, SIGNORINI R, DURANTE C, et al. A review on surface-enhanced Raman scattering[J]. Biosensors,2019, 9(2):57.

[17] LE RU E C, BLACKIE E, MEYER M, et al. Surface enhanced Raman scattering enhancement factors:a comprehensive study[J]. The Journal of Physical Chemistry C,2007, 111(37):13794-13803.

[18] JIANG J, XU Z D, AMEEN A, et al. Large-area, lithography-free, low-cost SERS sensor with good flexibility and high performance[J]. Nanotechnology, 2016, 27(38):385205.

[19] XIAO L, FENG S L, HUA M Z, et al. Rapid determination of thiram on apple using a flexible bacterial cellulosebased SERS substrate[J]. Talanta, 2023, 254:124128.

[20] LIU K, LI Y, IQBAL M, et al. Thiram exposure in environment:a critical review on cytotoxicity[J]. Chemosphere,2022, 295:133928.

[21] HU B X, SUN D W, PU H B, et al. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method[J]. Talanta, 2020, 217:120998.

[22] XU L M, LIU H G, ZHOU H, et al. One-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detection[J]. Talanta, 2021, 228:122204.

基本信息:

DOI:

中图分类号:O657.37;TQ450.7

引用信息:

[1]臧俊飞,许美凤,王超男.基于闪耀光栅复型的SERS基底制备及其在农药检测中的应用[J].南通大学学报(自然科学版),2023,22(04):87-94.

基金信息:

国家自然科学基金青年科学基金项目(61601249)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文