nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.24 82-94
三组分体系温致变色材料的制备及其应用研究进展
基金项目(Foundation):
邮箱(Email): minmin0421@163.com
DOI: 10.12194/j.ntu.20250512001
摘要:

温致变色材料作为一类重要的智能响应材料,其通过分子结构可逆变化实现对外界温度的动态响应,探究其变色机制与性能优化对拓展该材料在智能显示、温度传感器、建筑节能等领域的实际应用具有重要意义。本文综述了三组分温致变色材料的研究进展,首先阐明了由发色剂、显色剂和固体溶剂构成的协同变色体系的作用机理,重点分析了发色剂分子结构、显色剂电子转移特性和固体溶剂相变行为对材料变色温度、响应速度和稳定性的调控规律。针对现有材料在环境稳定性方面的不足,详细比较了界面聚合、原位聚合等微胶囊化技术的优劣。在应用方面,重点探讨了该材料在智能建筑、动态防伪和功能纺织品等领域的创新实践。最后指出当前研究在窄温域精准调控、多重响应设计等方面存在的不足,并提出未来应着力开发分子工程优化策略、光热协同响应体系以及环境友好制备工艺,为智能响应材料的性能突破和应用拓展提供理论支撑与技术路径。

Abstract:

Thermochromic materials, as a significant class of smart responsive materials, exhibit dynamic responses to external temperature variations through reversible molecular structural changes. Investigating their chromic mechanisms and performance optimization is of great importance for expanding their practical applications in fields such as smart displays, temperature sensors, and building energy efficiency. This review summarizes recent advances in three-component thermochromic materials. The working mechanism of the synergistic coloration system, composed of color formers, color developers, and solid solvents, is elucidated. Emphasis is placed on analyzing the regulatory effects of molecular structures of color formers, electron transfer characteristics of color developers, and phase transition behaviors of solid solvents on the materials′ coloration temperature, response speed, and stability. To address the environmental stability limitations of existing materials, the advantages and disadvantages of microencapsulation techniques,such as interfacial polymerization and in-situ polymerization, are comprehensively compared. In terms of applications,innovative practices in smart buildings, dynamic anti-counterfeiting, and functional textiles are highlighted. Finally,current research shortcomings, including precise regulation within narrow temperature ranges and multi-responsive design, are identified. Future efforts should focus on developing molecular engineering optimization strategies, photothermal synergistic responsive systems, and environmentally friendly preparation processes to provide theoretical foundations and technical pathways for performance breakthroughs and application expansion of smart materials.

参考文献

[1] ZHAN L Y, XU W X, HU Z X, et al. Full-color″off-on″thermochromic fluorescent fibers for customizable smart wearable displays in personal health monitoring[J]. Small,2024, 20(29):2310762.

[2] HE Y Y, LI W, HAN N, et al. Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor[J]. Applied Energy, 2019, 247:615-629.

[3] XU G, LU Y C, ZHOU X, et al. Thermochromic hydrogel-based energy efficient smart windows:fabrication,mechanisms , and advancements[J]. Materials Horizons ,2024, 11(20):4867-4884.

[4] CHENG Y L, ZHANG X Q, FANG C Q, et al. Discoloration mechanism, structures and recent applications of thermochromic materials via different methods:a review[J].Journal of Materials Science&Technology, 2018, 34(12):2225-2234.

[5] SINGH A, SATAPATHI S. Reversible thermochromism in all-inorganic lead-free Cs3Sb2I9perovskite single crystals[J]. Advanced Optical Materials, 2021, 9(22):2101062.

[6] NAGARE S M, HAKAMI A, BISWAS P K, et al. A review of thermochromic materials for coating applications:production, protection, and degradation of organic thermochromic materials[J]. Journal of Coatings Technology and Research, 2025, 22(1):91-115.

[7] SCHLAFMANN K R, ALAHMED M S, PEARL H M, et al. Tunable and switchable thermochromism in cholesteric liquid crystalline elastomers[J]. ACS Applied Materials&Interfaces, 2024, 16(18):23780-23787.

[8] ZHANG X, WANG Y W, IVASISHIN O M, et al. Thermally induced lattice-defective oxygen breathing in perovskite-structure stannates with high-contrast reversible thermochromism[J]. ACS Applied Materials&Interfaces ,2024, 16(9):11665-11677.

[9] NAUMOV P, LEE S C, ISHIZAWA N, et al. New type of dual solid-state thermochromism:modulation of intramolecular charge transfer by intermolecularπ-πinteractions,kinetic trapping of the aci-nitro group, and reversible molecular locking[J]. The Journal of Physical Chemistry A,2009, 113(42):11354-11366.

[10] LEVIT S L, NGUYEN J, HATTRUP N P, et al. Color space transformation-based algorithm for evaluation of thermochromic behavior of cholesteric liquid crystals using polarized light microscopy[J]. ACS Omega, 2020, 5(13):7149-7157.

[11]魻ZKAYALAR S, AD1GüZEL E, ALAY AKSOY S, et al.Reversible color-changing and thermal-energy storing nanocapsules of three-component thermochromic dyes[J].Materials Chemistry and Physics, 2020, 252:123162.

[12] DAI X, SHEN X D. Research on microcapsules of phase change materials[J]. Rare Metals, 2006, 25(6):393-399.

[13] WENG K Y, XU X Y, CHEN Y Y, et al. Development and applications of multifunctional microencapsulated PCMs:a comprehensive review[J]. Nano Energy , 2024 , 122:109308.

[14]黄洪松.三芳甲烷类电气设备发热故障示温材料制备与性能研究[D].重庆:重庆大学,2021.HUANG H S. Study on the preparation and performance of triarylmethane temperature indicating material for electrical equipment[D]. Chongqing:Chongqing University , 2021.(in Chinese)

[15] KOZLENKO A S, OZHOGIN I V, PUGACHEV A D, et al. A modern look at spiropyrans:from single molecules to smart materials[J]. Topics in Current Chemistry , 2023 ,381(1):8.

[16] SHARIFI M, SHARIFI A, ABAEE M S, et al. A review on Fluoran compounds as widely used leuco dyes[J]. Dyes and Pigments, 2024, 221:111783.

[17]关玉.荧烷类水致变色分子开关的设计合成与性质研究[D].长春:吉林大学,2022.GUAN Y. Design, synthesis and properties of fluorane hydrochromic molecular switches[D]. Changchun:Jilin University, 2022.(in Chinese)

[18]于永.三芳甲烷苯酞类可逆热致变色材料[D].太原:中北大学,2007.YU Y. Reversible thermochromism materials of triarylmethane derivation[D]. Taiyuan:North University of China,2007.(in Chinese)

[19] DESHPANDE S S, KUMBHAR H S, SHANKARLING G S. Solvatochromic fluorescence properties of phenothiazine-based dyes involving thiazolo[4, 5-b] quinoxaline and benzo[e] indole as strong acceptors[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2017, 174:154-163.

[20] TANG P, CHEN Q, JIANG Y, et al. Preparation of a cellulose film based on a binary thermoreversible colorchanging system with long-chain color developers for information storage[J]. ACS Sustainable Chemistry&Engineering, 2024, 12(26):9845-9855.

[21] WANG C C, GONG X D, LI J S, et al. Ultrahigh-sensitivity thermochromic smart fabrics and flexible temperature sensors based on intramolecular proton-coupled electron transfer[J]. Chemical Engineering Journal , 2022 , 446:136444.

[22] WU W Z, WANG C C, SU J, et al. Structure design of light-resistance fluorane dyes and preparation of color changing materials[J]. Journal of Molecular Structure ,2024, 1302:137388.

[23] SHI Q, LI M R, GONG K, et al. Stable low temperature reversible thermochromic indicators for vaccine storage and transportation[J]. Dyes and Pigments, 2025, 241:112894.

[24]刘思敏.新型热致变色体系的构建及其变色行为研究[D].天津:天津大学,2021.LIU S M. Construction of the new thermochromic systems and research of its discoloration[D]. Tianjin:Tianjin University, 2021.(in Chinese)

[25] ZHOU W M, YANG Q, TAO S X, et al. Utilization of tea polyphenols as color developers in reversible thermochromic dyes for thermosensitive color change and enhanced functionality of polyester fabrics[J]. Molecules, 2024, 29(20):4944.

[26]胡勇.有机可逆热致变色材料微胶囊制备及性能研究[D].武汉:武汉轻工大学,2015.HU Y. Preparation and performance of microcapsules with organic reversible thermochromic materials as core[D].Wuhan:Wuhan Polytechnic University, 2015.(in Chinese)

[27] JIANG Y Y, YAN P Y, WANG Y J, et al. Form-stable phase change materials with enhanced thermal stability and fire resistance via the incorporation of phosphorus and silicon[J]. Materials&Design, 2018, 160:763-771.

[28]王镛凯.有机可逆温致变色微胶囊颜料的制备[D].天津:天津科技大学,2017.WANG Y K. Preparation of organic reversible thermochromic microcapsule pigment[D]. Tianjin:Tianjin University of Science&Technology, 2017.(in Chinese)

[29] PANáK O, DRZKOVáM, SVOBODA R, et al. Combined colorimetric and thermal analyses of reversible thermochromic composites using crystal violet lactone as a colour former[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(1):633-640.

[30] AKLUJKAR P S, KANDASUBRAMANIAN B. A review of microencapsulated thermochromic coatings for sustainable building applications[J]. Journal of Coatings Technology and Research, 2021, 18(1):19-37.

[31]耿晓叶.可逆热致变色相变储能材料微胶囊的制备、表征及性能研究[D].天津:天津工业大学,2021.

[32] YANG X, LIU Y, LV Z H, et al. Synthesis of high latent heat lauric acid/silica microcapsules by interfacial polymerization method for thermal energy storage[J]. Journal of Energy Storage, 2021, 33:102059.

[33]冯冰涛.原位聚合法制备尼龙6/连续纤维复合材料的研究[D].石家庄:河北科技大学,2024.FENG B T. Study on preparation of nylon 6/continuous fiber composites by in situ polymerizatio[D]. Shijiazhuang:Hebei University of Science and Technology, 2024.(in Chinese)

[34] CHAI R T, ZHANG G. Preparation and characterization of red, green, blue(RGB)and white luminescent inorganic/organic polymers through in situ polymerization[J/OL].Journal of Fluorescence, 2024[2025-04-20]. https://link.springer.com/article/10.1007/s10895-024-04046-4.

[35]徐沣.纳米SiO2改性脲醛树脂/相变微胶囊制备及性能研究[D].苏州:苏州科技大学,2021.XU F. Preparation and properties of nano-SiO2modified urea formaldehyde resin/phase change microcapsules[D].Suzhou:Suzhou University of Science and Technology,2021.(in Chinese)

[36]袁换美.复合相变储热纳米胶囊的形成机制及性能优化基础研究[D].北京:北京科技大学,2020.YUAN H M. Study on the formation mechanism and performance optimization of the composite phase change nanocapsules for thermal storage[D]. Beijing:University of Science and Technology Beijing, 2020.(in Chinese)

[37] CHEN L, ZHANG W Q, DU H, et al. Enhancing safety through the biodegradable pesticide microcapsules produced via melt emulsification and interfacial polymerization[J]. Chemical Engineering Journal, 2024, 483:149407.

[38] WANG T H, LIU X B, LUO J, et al. Reduction of interfacial polycondensation self-limitation through solvent swelling to dynamically modulate shell thickness and structure of microcapsules[J]. Polymer, 2023, 285:126369.

[39] LI Y J, JIANG Z N, HE F F, et al. Reversible thermochromic microcapsules with SiO2shell for indicating temperature and thermoregulation[J]. Journal of Energy Storage, 2023, 72:108674.

[40] ZHOU W M, YANG Q, TAO S X, et al. Fabrication and reversible thermotropic characterization of polyurethane/dye microcapsules composite films for thermal management[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 703:135226.

[41] ZHANG W H, ZHANG H, LIU S H, et al. Preparation and crystallization behavior of sensitive thermochromic microencapsulated phase change materials[J]. Applied Energy, 2024, 362:122993.

[42] ZHANG L Y, ZHANG X L, HUA W S, et al. Optimization of a silicon-based microencapsulation technology of phase change material without organic solvents[J]. Journal of Energy Storage, 2023, 64:107122.

[43] LIU W, LIN Q Y, CHEN S Y, et al. Microencapsulated phase change material through cellulose nanofibrils stabilized Pickering emulsion templating[J]. Advanced Composites and Hybrid Materials, 2023, 6(4):149.

[44] WANG X G, LEI W Y, ZOU F B, et al. Ternary mixture thermochromic microcapsules for visible light absorption and photothermal conversion energy storage[J]. Applied Surface Science, 2023, 630:157431.

[45] GENG X Y, WANG Y, HAN N, et al. Influences of PVA modification on performance of microencapsulated reversible thermochromic phase change materials for energy storage application[J]. Solar Energy Materials and Solar Cells, 2021, 222:110938.

[46] JI X P, WANG S Q, YAO B C, et al. Preparation and properties of nano-SiO2modified microcapsules for asphalt pavement[J]. Materials&Design, 2023, 229:111871.

[47] XUE D, ZHAO T. The electrothermal color-changing fabric based on high-sensitivity thermochromic microcapsules[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 678:132458.

[48] DING J, LIU T R, ZHAO Y L, et al. Robust, versatile access to quasi-monodispersed phase change sub-microcapsules via ab initio emulsion polymerization[J]. ACS Sustainable Chemistry&Engineering, 2023, 11(4):1482-1491.

[49] T魻ZüM M S, ALKAN C, AKSOY S A. Preparation of poly(methyl methacrylate-co-ethylene glycol dimethacrylateco-glycidyl methacrylate)walled thermochromic microcapsules and their application to cotton fabrics[J]. Journal of Applied Polymer Science, 2020, 137(24):48815.

[50] T魻ZüM M S, AKSOY S A, ALKAN C. Microencapsulation of three-component thermochromic system for reversible color change and thermal energy storage[J]. Fibers and Polymers, 2018, 19(3):660-669.

[51] QIAN B, ZHENG Z L, LIU C B, et al. Microcapsules prepared via Pickering emulsion polymerization for multifunctional coatings[J]. Progress in Organic Coatings, 2020,147:105785.

[52] PARK S, JO B. Novel surfactant-free microencapsulation of molten salt using TiO2shell for high temperature thermal energy storage:thermal performance and thermal reliability[J]. Journal of Energy Storage, 2023, 63:107016.

[53] JI W, CHENG X M, CHEN H X, et al. Efficient synthesis of regular spherical GO/SiO2@Solar Salt microcapsules to enhance heat-storage capacity and cycle stability[J].Energy Conversion and Management, 2021, 245:114637.

[54] JI Y H, ZHANG Y H, WANG X X, et al. Reversible thermochromic transparent bamboo for dynamically adaptive smart windows[J]. Industrial Crops and Products ,2023, 197:116593.

[55] ZHANG Y X, ZHAI X Q. Preparation and testing of thermochromic coatings for buildings[J]. Solar Energy, 2019,191:540-548.

[56] LIU Y B, WU Y, MA Y F, et al. Reversible thermochromic and heat storage coating for adaptive de/anti-icing and thermal regulation[J]. Chemical Engineering Journal, 2024,482:148837.

[57] WU T H, YIN T H, HU X C, et al. A thermochromic hydrogel for camouflage and soft display[J]. Advanced Optical Materials, 2020, 8(9):2000031.

[58] LI H T, ZHU M J, TIAN F, et al. Polychrome photonic crystal stickers with thermochromic switchable colors for anti-counterfeiting and information encryption[J]. Chemical Engineering Journal, 2021, 426:130683.

[59] TOAN V N, TRI N M, NGUYEN X H, et al. Exploring the potential of organic thermochromic materials in textile applications[J]. Journal of Materials Science , 2024 , 59(32):14924-14947.

[60] LI P, SUN Z H, WANG R, et al. Flexible thermochromic fabrics enabling dynamic colored display[J]. Frontiers of Optoelectronics, 2022, 15(1):40.

[61] GUAN Y, ZHANG L P, WANG D, et al. Preparation of thermochromic liquid crystal microcapsules for intelligent functional fiber[J]. Materials&Design, 2018, 147:28-34.

[62] DONG J C, PENG Y D, NIE X L, et al. Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode[J]. Advanced Functional Materials, 2022, 32(48):2209762.

[63]高燕.热致变色微胶囊的制备及在纺织上的应用研究[D].上海:东华大学,2015.GAO Y. Preparation of thermochromic microcapsule and its application on fabrics[D]. Shanghai:Donghua University,2015.(in Chinese)

[64] ZHOU L, YE J P, CAI Q Z, et al. Study on preparation,characterization and application of mixed-colorants thermochromic microcapsules[J]. Particuology, 2024, 88:89-97.

[65] ZHANG W, HOU C Y, LI Y G, et al. Microfluidic spinning of editable polychromatic fibers[J]. Journal of Colloid and Interface Science, 2020, 558:115-122.

[66] KARPAGAM K R, SARANYA K S, GOPINATHAN J, et al. Development of smart clothing for military applications using thermochromic colorants[J]. The Journal of the Textile Institute, 2017, 108(7):1122-1127.

[67] LU Q X, LIU R, ZHANG D D, et al. Thermochromic pastes for reversible dynamic simulation of colors and visible reflection spectra of green leaf and soil[J]. Dyes and Pigments, 2024, 230:112314.

基本信息:

DOI:10.12194/j.ntu.20250512001

中图分类号:TB34

引用信息:

[1]毛丽芬,肖红,代国亮,等.三组分体系温致变色材料的制备及其应用研究进展[J].南通大学学报(自然科学版),2025,24(03):82-94.DOI:10.12194/j.ntu.20250512001.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文