| 122 | 0 | 98 |
| 下载次数 | 被引频次 | 阅读次数 |
为探究啮合刚度、传动误差及侧隙对双曲型法向圆弧齿轮传动动态响应的影响,建立齿轮副的动力学方程,并在数值计算的基础上进行仿真分析。运用有限元方法,计算接触位置处的载荷及变形,并对时变啮合刚度、静态传动误差和侧隙进行量化分析。仿真结果表明:对振动位移响应影响最大的是侧隙,其次是时变啮合刚度;对动态啮合力影响最大的则是时变啮合刚度和侧隙。
Abstract:To investigate the effects of meshing stiffness, transmission error, and backlash on the dynamic response of hyperboloidal-type normal circular-arc gears(HNCGs), a dynamical equation of the gear pair is established, and simulation analysis is conducted based on numerical calculations. The finite element method is used to calculate the load and deformation at the contact position, and a quantitative analysis of time-varying meshing stiffness(TVMS), static transmission error(STE), and backlash is performed. Simulation results show that backlash has the greatest impact on the vibration displacement response, followed by time-varying meshing stiffness; whereas the time-varying meshing stiffness and backlash have the most significant effects on the dynamic meshing force.
[1] AL-SHYY AB A, KAHRAMAN A. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method:period-one motions[J]. Journal of Sound and Vibration, 2005, 284(1/2):151-172.
[2] AL-SHYYAB A, KAHRAMAN A. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method:sub-harmonic motions[J]. Journal of Sound and Vibration, 2005, 279(1/2):417-451.
[3]林腾蛟,冉雄涛.正交面齿轮传动非线性振动特性分析[J].振动与冲击,2012, 31(2):25-31.LIN T J, RAN X T. Nonlinear vibration characteristic analysis of a face-gear drive[J]. Journal of Vibration and Shock, 2012, 31(2):25-31.(in Chinese)
[4]王立华,黄亚宇,李润方,等.准双曲面齿轮系统振动的理论分析与试验研究[J].机械设计与研究,2007, 23(1):65-67.WANG L H, HUANG Y Y, LI R F, et al. The theoretical analysis and experimental investigation of the vibration in hypoid gear system[J]. Machine Design&Research, 2007,23(1):65-67.(in Chinese)
[5] CHENG Y, LIM T C. Vibration analysis of hypoid transmissions applying an exact geometry-based gear mesh theory[J]. Journal of Sound and Vibration, 2001, 240(3):519-543.
[6] CHENG Y P, LIM T C. Dynamics of hypoid gear transmission with nonlinear time-varying mesh characteristics[J].Journal of Mechanical Design, 2003, 125(2):373-382.
[7] WANG J, LIM T C. Effect of tooth mesh stiffness asymmetric nonlinearity for drive and coast sides on hypoid gear dynamics[J]. Journal of Sound and Vibration, 2009, 319(3/4/5):885-903.
[8] SHI Z H, LI S. Nonlinear dynamics of hypoid gear with coupled dynamic mesh stiffness[J]. Mechanism and Machine Theory, 2022, 168:104589.
[9]杨宏斌,高建平,邓效忠,等.弧齿锥齿轮和准双曲面齿轮非线性动力学研究[J].航空动力学报,2004, 19(1):54-57.YANG H B, GAO J P, DENG X Z, et al. Nonlinear dynamics of spiral bevel gears and hypoid gear drives[J].Journal of Aerospace Power, 2004, 19(1):54-57.(in Chinese)
[10]冯治恒,王时龙,雷松,等.时变摩擦系数对准双曲面齿轮动力学行为的影响[J].重庆大学学报,2011, 34(12):9-15.FENG Z H, WANG S L, LEI S, et al. Effects of timevarying friction coefficient on hypoid gear dynamics[J].Journal of Chongqing University, 2011, 34(12):9-15.(in Chinese)
[11] CHEN H J, DUAN Z Y, LIU J, et al. Research on basic principle of moulding-surface conjugation[J]. Mechanism and Machine Theory, 2008, 43(7):791-811.
[12] CHEN H J, ZHANG X P, CAI X, et al. Computerized design, generation and simulation of meshing and contact of hyperboloidal-type normal circular-arc gears[J]. Mechanism and Machine Theory, 2016, 96:127-145.
[13] YAN G W, CHEN H J, ZHANG X P, et al. A dimension-driven adaptive programming for tool-path planning and post-processing in 5-axis form milling of hyperboloidal-type normal circular-arc gears[J]. The International Journal of Advanced Manufacturing Technology, 2020,106(7):2735-2746.
[14] CHAARI F, FAKHFAKH T, HADDAR M. Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness[J]. European Journal of Mechanics-A/Solids, 2009, 28(3):461-468.
[15]唐进元,蒲太平.基于有限元法的螺旋锥齿轮啮合刚度计算[J].机械工程学报,2011, 47(11):23-29.TANG J Y, PU T P. Spiral bevel gear meshing stiffness calculations based on the finite element method[J]. Journal of Mechanical Engineering, 2011, 47(11):23-29.(in Chinese)
[16]魏静,孙清超,孙伟,等.大型风电齿轮箱系统耦合动态特性研究[J].振动与冲击,2012, 31(8):16-23.WEI J, SUN Q C, SUN W, et al. Dynamical coupling characteristics of a large wind turbine gearbox transmission system[J]. Journal of Vibration and Shock, 2012, 31(8):16-23.(in Chinese)
[17]唐进元.齿轮传递误差计算新模型[J].机械传动,2008,32(6):13-14.TANG J Y. Modeling of gear transmission error[J]. Journal of Mechanical Transmission, 2008, 32(6):13-14.(in Chinese)
[18]李润方,陶泽光,林腾蛟,等.齿轮啮合内部动态激励数值模拟[J].机械传动,2001, 25(2):1-3.LI R F, TAO Z G, LIN T J, et al. Numerical simulation for inner dynamic excitation of gearing[J]. Journal of Mechanical Transmission, 2001, 25(2):1-3.(in Chinese)
[19]方禹鑫,丁千,张微.多齿侧间隙传动系统非线性特性研究[J].振动与冲击,2016, 35(23):29-34.FANG Y X, DING Q, ZHANG W. Non-linear dynamic features of a steering gear system with backlashes[J]. Journal of Vibration and Shock, 2016, 35(23):29-34.(in Chinese)
[20]邹英永,李振华,赵凯.齿轮系统动力学微分方程的数值分析方法[J].长春大学学报,2009, 19(8):1-3.ZOU Y Y, LI Z H, ZHAO K. The numerical analysis method for solving dynamics differential e quations of gear systems[J]. Journal of Changchun University, 2009, 19(8):1-3.(in Chinese)
基本信息:
DOI:10.12194/j.ntu.20220622001
中图分类号:TH132.416
引用信息:
[1]陈厚军,张小萍,史冬荷,等.双曲型法向圆弧齿轮传动的动力学分析[J].南通大学学报(自然科学版),2024,23(01):66-72.DOI:10.12194/j.ntu.20220622001.
基金信息:
国家自然科学基金青年科学基金项目(51105210)