204 | 0 | 89 |
下载次数 | 被引频次 | 阅读次数 |
随着人口数量剧增,人类社会对自然资源的需求不断增加,加上全球气候变化,特别是在土地干旱与内陆地区,淡水需求持续增加。文章利用针刺非织造技术制备活性炭纤维(activated carbon fiber,ACF)/木棉纤维(kapok fiber,KF)双层复合毡(activated carbon fiber/kapok fiber,CKF),得到纤维基太阳能界面蒸发器。其中,底层KF的疏水性保证了材料具有良好的自浮性,顶层ACF的亲水性能够将水分向上传输。考察了纤维基太阳能界面蒸发器的结构稳定性、亲水性、热管理性能对蒸汽产生性能的影响,并探究其对海水的净化能力。选用不同面密度木棉针刺毡与活性炭纤维毡进行针刺复合,经过工艺优化,将针刺密度设定为120次/m2,使得材料在300~2 500 nm太阳光波段的吸收率高于95%。研究发现:选用面密度为200 g/m2的木棉针刺毡与面密度为278 g/m2的活性炭纤维毡进行针刺加固复合得到的材料,蒸汽产生性能最佳,在1.0 kW/m2的光照强度下蒸发效率达到1.01 kg/(m2·h),光热转换效率为65%,最高温度为64.6℃。研究结果可为高效太阳能水蒸发器的构筑提供新思路。
Abstract:With the rapid increase in the human population, the demand for natural resources is rising, coupled with global climate change, especially in arid and inland areas where the demand for fresh water continues to grow. This study utilizes needle-punched nonwoven technology to prepare a fiber-based solar interface evaporator from activated carbon fiber(ACF)/kapok fiber(KF) double-layer composite felt(CKF). The hydrophobicity of the bottom KF layer ensures good self-buoyancy, while the hydrophilicity of the top ACF layer facilitates upward water transport. The influence of structural stability, hydrophilicity, and thermal management performance on the steam generation performance of the fiber-based solar interface evaporator was investigated, and its seawater purification capacity was explored.Different gram weights of kapok needled felt and activated carbon fiber felt were selected for needled composites.After process optimization, the needling density was set at 120 punches/m2, resulting in a solar absorption rate of over95% in the 300-2 500 nm wavelength range. The study found that the composite material, reinforced with 200 g/m2 kapok needled felt and 278 g/m2 activated carbon fiber felt, exhibited the best vapor generation performance. Under 1.0kW/m2 illumination, the evaporation efficiency reached 1.01 kg/(m2·h), the photothermal conversion efficiency was65%, and the maximum temperature reached 64.6 ℃. The results provide new insights into the construction of highefficiency solar water evaporators.
[1]张建军,李帅旗,陈永珍,等.蒸汽再压缩技术研究现状与发展趋势[J].新能源进展,2020, 8(3):207-215.ZHANG J J, LI S Q, CHEN Y Z, et al. Overview and development tendency of steam recompression[J]. Advances in New and Renewable Energy, 2020, 8(3):207-215.(in Chinese)
[2]依庆文,郭浩,邢兆强,等.低温多效海水淡化加药系统优化研究[J].盐科学与化工,2023, 52(10):20-25.YI Q W, GUO H, XING Z Q, et al. Optimization of dosing system for low temperature multi-effect desalination[J].Journal of Salt Science and Chemical Industry, 2023, 52(10):20-25.(in Chinese)
[3]许正,李泽华,苏铭晗,等.海水淡化膜蒸馏膜的研究现状与展望[J].河北科技大学学报,2024, 45(1):15-25.XU Z, LI Z H, SU M H, et al. Research status and prospect of seawater desalination membrane distillation membrane[J]. Journal of Hebei University of Science and Technology, 2024, 45(1):15-25.(in Chinese)
[4] ELIMELECH M, PHILLIP W A. The future of seawater desalination:energy, technology, and the environment[J].Science, 2011, 333(6043):712-717.
[5]张雨山.海水淡化技术产业现状与发展趋势[J].工业水处理,2021, 41(9):26-30.ZHANG Y S. The status and development trend of seawater desalination tech industry[J]. Industrial Water Treatment,2021, 41(9):26-30.(in Chinese)
[6] LIANG H X, LIAO Q H, CHEN N, et al. Thermal efficiency of solar steam generation approaching 100%through capillary water transport[J]. Angewandte Chemie(International Ed in English), 2019, 58(52):19041-19046.
[7] ARUNKUMAR T, WANG J Q, DENKENBERGER D. Capillary flow-driven efficient nanomaterials for seawater desalination:review of classifications, challenges, and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2021, 138:110547.
[8] WANG S Z, ALMENABAWY S M, KHERANI N P, et al.Solar-driven interfacial water evaporation using openporous PDMS embedded with carbon nanoparticles[J]. ACS Applied Energy Materials, 2020, 3(4):3378-3386.
[9] XU Z R, LI Z D, JIANG Y H, et al. Recent advances in solar-driven evaporation systems[J]. Journal of Materials Chemistry A, 2020, 8(48):25571-25600.
[10] ZHANG J F, TANG R C. Preparation of phosphorylated kapok fiber using ammonium dihydrogen phosphate and its thermal degradation and flame retardancy[J]. Cellulose,2023, 30(17):10733-10748.
[11] HOU Q, XUE C R, LI N, et al. Self-assembly carbon dots for powerful solar water evaporation[J]. Carbon, 2019,149:556-563.
[12] WANG F, WANG C B, SHI G L, et al. Isolating solar harvesting and water evaporation of salt-free Janus steam generator for concentration-independent seawater desalination[J]. Desalination, 2023, 545:116157.
[13]蒋逸飞,田焰宽,戴俊,等.太阳能驱动多级海水淡化器件的设计及其集水率探究[J].纺织学报,2023, 44(8):9-17.JIANG Y F, TIAN Y K, DAI J, et al. Design of solardriven multistage desalination device and investigation of water collection rate[J]. Journal of Textile Research, 2023,44(8):9-17.(in Chinese)
[14] GAO H, BING N C, BAO Z J, et al. Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination[J]. Chemical Engineering Journal, 2023,454:140362.
[15] HUO H X, MA Y H, CHENG Y, et al. 3D carbon aerogel from waste corrugated cardboard as a photothermal reservoir for solar steam generation[J]. Environmental Science and Pollution Research, 2022, 29(16):23936-23948.
[16] LI Y R, JIN X, LI W, et al. Biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation[J]. Science China Materials, 2022, 65(4):1057-1067.
[17] SUN Q Q, XU J, LU C B, et al. Green and sustainable kapok fibre as novel core materials for vacuum insulations panels[J]. Applied Energy, 2023, 347:121394.
[18] LIN S W, QI H S, HOU P Y, et al. Resource recovery from textile wastewater:dye, salt, and water regeneration using solar-driven interfacial evaporation[J]. Journal of Cleaner Production, 2023, 391:136148.
[19] YANG E Q, WEI N, LI M H, et al. Three-dimensional artificial transpiration structure based on 1T/2H-MoS2/activated carbon fiber cloth for solar steam generation[J]. ACS Applied Materials&Interfaces, 2022, 14(26):29788-29796.
[20] FANG Q L, LI T T, LIN H B, et al. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resistance[J].ACS Applied Energy Materials, 2019, 2(6):4354-4361.
[21] AMARAL M A Jr, MATSUSHIMA J T, REZENDE M C,et al. Production and characterization of activated carbon fiber from textile PAN fiber[J]. Journal of Aerospace Technology and Management, 2017, 9(4):423-430.
[22]梁小庆,张悦雯,沈艳琴,等.涤纶/黏胶纤维复合针刺非织造布的制备及疏水整理[J].纺织科学与工程学报,2024, 41(1):19-23.LIANG X Q, ZHANG Y W, SHEN Y Q, et al. Preparation and hydrophobic finishing of polyester/viscose fiber composite needled nonwovens[J]. Journal of Textile Science and Engineering, 2024, 41(1):19-23.(in Chinese)
基本信息:
DOI:10.12194/j.ntu.20240416001
中图分类号:P747;TS176.3
引用信息:
[1]汪航,李素英,张伟等.活性炭纤维/木棉复合针刺材料的制备及其海水淡化性能研究[J].南通大学学报(自然科学版),2024,23(02):67-73.DOI:10.12194/j.ntu.20240416001.
基金信息:
国家重点研发计划项目(2016YFB0303101)); 国家自然科学基金青年科学基金项目(51803094)