| 57 | 0 | 30 |
| 下载次数 | 被引频次 | 阅读次数 |
动态红外调控技术在智能热管理及自适应伪装领域具有重大应用价值,但其发展面临传统电致变色器件带来的关键瓶颈。主流的金属氧化物、导电聚合物等电致变色器件普遍存在导电层依赖性强、界面阻抗高等问题;而基于碳纳米材料的新型红外调控器件又受限于复杂制备工艺和电解质泄漏风险的问题,制约其实际应用。针对这些问题,本研究提出喷涂法制备单壁碳纳米管电极与热压成型聚氨酯固态电解质的协同构筑策略,成功研制了功能层和导电层一体化的柔性固态红外调控器件。实验结果表明,优化后的器件不仅在8~14μm波段实现0.52的发射率调制幅度,还具有秒级的快速发射率切换速度。经过400次循环后,器件可保持86.3%的初始调制性能;在经历200次机械弯折后,其性能保持率达94.6%,展现出良好的循环稳定性与机械柔性。本研究为开发高集成度、耐弯折的柔性红外调控器件提供了新的思路。
Abstract:Dynamic infrared control technology has great application value in the field of intelligent thermal management and adaptive camouflage, but its development faces the key bottleneck of traditional electrochromic devices.Mainstream electrochromic devices such as metal oxides and conductive polymers generally have problems such as strong dependence on the conductive layer and high interface impedance. The new infrared control devices based on carbon nanomaterials are limited by the complex preparation process and the risk of electrolyte leakage, which restricts their practical application. To address these challenges, this study proposed a synergistic construction strategy of single-walled carbon nanotube electrode prepared by spraying method and hot-pressed polyurethane solid electrolyte, and successfully developed a flexible solid-state infrared control device integrating functional layer and conductive layer.Experimental results demonstrate that the optimized device achieves a high emissivity modulation amplitude of 0.52 in the 8-14 μm wavelength range, along with a rapid second-level switching speed. After 400 cycles, the device maintains 86.3% of its initial modulation performance. Even after 200 mechanical bending cycles, it retains 94.6% of its original performance, highlighting excellent cycling stability and mechanical flexibility. This study provides a new idea for the development of flexible infrared control devices with high integration and bending resistance.
[1] HU R , XI W , LIU Y D , et al. Thermal camouflaging metamaterials[J]. Materials Today, 2021, 45:120-141.
[2] RAMAN A P, ABOU ANOMA M, ZHU L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528):540-544.
[3] HAN T C, BAI X, THONG J T L, et al. Full control and manipulation of heat signatures:cloaking, camouflage and thermal metamaterials[J]. Advanced Materials , 2014, 26(11):1731-1734.
[4] CHANDRA S, FRANKLIN D, COZART J, et al. Adaptive multispectral infrared camouflage[J]. ACS Photonics, 2018,5(11):4513-4519.
[5] LIM T, JEONG S M, SEO K, et al. Development of fiberbased active thermal infrared camouflage textile[J]. Applied Materials Today, 2020, 20:100624.
[6] ZHANG L, CHAO D L, YANG P H, et al. Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink[J]. Advanced Energy Materials, 2020, 10(17):2000142.
[7] KIM S Y, YUN T Y, YU K S, et al. Reliable, high-performance electrochromic supercapacitors based on metaldoped nickel oxide[J]. ACS Applied Materials&Interfaces, 2020, 12(46):51978-51986.
[8] ZHANG H Z, LIU Y L, TANG S W, et al. Multi-spectrum compatible electrochromic device combining microwave transmission with ultra-wide emissivity modulation[J]. Chemical Engineering Journal, 2024, 498:155419.
[9]丁秉强,李耀刚,石国英,等.柔性电致变色器件用聚氨酯/Yb3O(OH)6Cl全固态复合电解质[J/OL].东华大学学报(自然科学版)[2025-05-05]. https://doi.org/10.19886/j.cnki.dhdz.2025.0203.DING B Q, LI Y G, SHI G Y, et al. Polyurethane/Yb3O-(OH)6Cl all-solid composite electrolyte for flexible electrochromic devices[J/OL]. Journal of Donghua University(Natural Science)[2025-05-05]. https://doi.org/10.19886/j.cnki.dhdz.2025.0203.
[10]谢鸿杰,范苏娜,张耀鹏.聚苯胺与氧化钨二水合物双波段电致变色复合薄膜制备及性能[J].东华大学学报(自然科学版),2024, 50(4):98-104.XIE H J, FAN S N, ZHANG Y P. Preparation and properties of polyaniline and tungsten oxide dihydrate dualband electrochromic composite films[J]. Journal of Donghua University(Natural Science), 2024, 50(4):98-104.(in Chinese)
[11] LI J M, ZHUANG Y L, CHEN J M, et al. Two-dimensional materials for electrochromic applications[J]. EnergyChem, 2021, 3(5):100060.
[12] ERGOKTAS M S, BAKAN G, KOVALSKA E, et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths[J]. Nature Photonics, 2021, 15(7):493-498..
[13] ZOU H Y, FENG Y H, TANG X L, et al. Interfacial thermal conduction mechanism of polypyrrole/carbon nanotube composites[J]. Composites Science and Technology ,2024, 245:110346.
[14] JI D Z, LI X, REZEQ M, et al. Long-term stable thermal emission modulator based on single-walled carbon nanotubes[J]. ACS Applied Materials&Interfaces , 2023, 15(31):37818-37827.
[15] WU Y C, LI D F, WU C L, et al. Electrostatic gating and intercalation in 2D materials[J]. Nature Reviews Materials,2023, 8(1):41-53.
[16] GLADUSH Y, MKRTCHYAN A A, KOPYLOVA D S, et al. Ionic liquid gated carbon nanotube saturable absorber for switchable pulse generation[J]. Nano Letters, 2019, 19(9):5836-5843.
[17] FAN Q C, FAN H W, HAN H Z, et al. Dynamic thermoregulatory textiles woven from scalable-manufactured radiative electrochromic fibers[J]. Advanced Functional Materials, 2024, 34(16):2310858.
[18] BAO W Z, WAN J Y, HAN X G, et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation[J]. Nature Communications, 2014, 5:4224.
[19] ERGOKTAS M S, BAKAN G, STEINER P, et al.Graphene-enabled adaptive infrared textiles[J]. Nano Letters, 2020, 20(7):5346-5352.
[20] LI Y W, SUN P Y, CHEN J, et al. Colorful electrochromic displays with high visual quality based on porous metamaterials[J]. Advanced Materials , 2023 , 35(23):2300116.
[21] ZHAO Y, LI L B, ZHOU D, et al. Opening and constructing stable lithium-ion channels within polymer electrolytes[J]. Angewandte Chemie International Edition, 2024,63(31):e202404728.
[22] LIANG G Y, XIAO Y, ZHANG J W, et al. Optimizing the emissivity regulation performance of a multilayer adaptive infrared camouflage structure based on transport ability control of an ionic liquid[J]. Applied Surface Science ,2023, 614:156145.
基本信息:
DOI:10.12194/j.ntu.20250511001
中图分类号:TQ127.11;TB383.1
引用信息:
[1]陈相君,王宏志,李克睿.碳纳米管基柔性固态红外调控器件[J].南通大学学报(自然科学版),2025,24(03):75-81.DOI:10.12194/j.ntu.20250511001.
基金信息:
国家自然科学基金面上项目(52472295)