nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 01, v.23;No.88 49-57
基于氮化铝薄膜的二维模态谐振器双模结构设计与仿真
基金项目(Foundation): 国家自然科学基金面上项目(62174092)
邮箱(Email): sun.yan@ntu.edu.cn
DOI: 10.12194/j.ntu.20230114001
摘要:

基于氮化铝(aluminum nitride,AlN)压电薄膜的二维模态谐振器(two-dimensional-mode resonators,2DMR)由于其较高的有效机电耦合系数k2eff及其与集成电路工艺兼容等优势,引起了业内广泛的关注。然而,传统的2DMR只研究单谐振模态,难以满足多模无线通信系统的需求。针对该问题,提出一种应用于5G new radio(5GNR)频段为2.6~3.4 GHz的二维模态(2DM)双模谐振器,通过合理设计电极宽度和电极周期,使得2个模态的品质因数Q和k2eff相当,实现了S1模态和高阶S1模态的有效激励。通过有限元方法研究分析了压电材料厚度及梳齿电极结构对2DMR双模谐振频率和k2eff的影响,S1模态谐振频率主要受压电材料厚度影响,高阶S1模态谐振频率在受压电材料厚度影响的同时还易受金属电极宽度影响。基于Al N压电薄膜中d33和d31压电系数的共同作用,所设计的2DMR中2个模态的k2eff分别达到3.1%和3.6%。随后,基于S1模态和高阶S1模态谐振处无杂散和高机电耦合性能,设计了含有50Ω阻抗匹配网络的双频带通滤波器,通过增加阶数提高器件的带外抑制。滤波器的2个传输频带相邻,无带内波纹且陡峭滚降,中心频率分别位于2.852和3.082 GHz,插入损耗分别为2.0和1.9 dB,分数带宽分别为29和39 MHz。研究结果说明了这种2DMR双模结构设计在射频前端极具应用潜力。

Abstract:

Two-dimensional-mode resonators (2DMR) based on aluminum nitride (AlN) piezoelectric thin films have attracted extensive attention in the industry due to their high effective electromechanical coupling coefficient k2effand compatibility with integrated circuit processes.However,traditional 2DMRs have only studied a single resonant mode which cannot meet the needs of multimode wireless communication systems.To address this issue,a dual-mode twodimensional-mode (2DM) resonator for 2.6-3.4 GHz has been proposed.By reasonably designing the electrode width and period,the quality factor Q and k2effof the two modes are made comparable,effectively exciting the S1 mode and

参考文献

[1] TANAKA M, MORITA T, ONO K, et al. Narrow bandpass filter using double-mode SAW resonators on quartz[C]//Proceedings of the 38th Annual Symposium on Frequency Control, May 29-June 1, 1984, Philadelphia, PA, USA.New York:IEEE Xplore, 2005:286-293.

[2] CHUNG C J, CHEN Y C, CHENG C C, et al. Fabrication and frequency response of solidly mounted resonators with1/4λmode configuration[J]. Thin Solid Films, 2008, 516(16):5277-5281.

[3] RUBY R C, BRADLEY P, OSHMYANSKY Y, et al. Thin film bulk wave acoustic resonators(FBAR)for wireless applications[C]//Proceedings of the 2001 IEEE Ultrasonics Symposium, October 7-10, 2001, Atlanta, GA, USA.New York:IEEE Xplore, 2002:813-821.

[4] PIAZZA G, STEPHANOU P J, PISANO A P. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators[J]. Journal of Microelectromechanical Systems, 2006, 15(6):1406-1418.

[5]俞燕,王璐烽,丁芩华,等.氮化铝压电微机电系统轮廓模式谐振器技术及应用[J].压电与声光,2022, 44(4):667-672.YU Y, WANG L F, DING Q H, et al. Al N piezoelectric MEMS CMR technology and application[J]. Piezoelectrics and Acoustooptics, 2022, 44(4):667-672.(in Chinese)

[6] CASSELLA C, PIAZZA G. Al N two-dimensional-mode resonators for ultra-high frequency applications[J]. IEEE Electron Device Letters, 2015, 36(11):1192-1194.

[7] GAO A M, LIU K F, LIANG J R, et al. Al N MEMS filters with extremely high bandwidth widening capability[J].Microsystems and Nanoengineering, 2020, 6:74.

[8] RINALDI M, ZUO C J, VAN DER SPIEGEL J, et al.Reconfigurable CMOS oscillator based on multifrequency Al N contour-mode MEMS resonators[J]. IEEE Transactions on Electron Devices, 2011, 58(5):1281-1286.

[9] GHOSH S, LEE J E Y. Lorentz force magnetic sensors based on piezoelectric aluminum nitride on silicon micromechanical resonators[C]//Proceedings of the 2018 IEEE13th Annual International Conference on Nano/Micro Engineered and Molecular Systems(NEMS), April 22-26, 2018,Singapore. New York:IEEE Xplore, 2018:288-291.

[10] LARSON J D, OSHMYANSKY Y. Film acoustically-coupled transformers with two reverse c-axis piezoelectric elements[J]. The Journal of the Acoustical Society of America,2007, 121(2):677.

[11] VERDU J, DE PACO P, MENENDEZó. Double-ladder filter topology for a dual-band transmission response based on bulk acoustic wave resonators[J]. IEEE Microwave and Wireless Components Letters, 2010, 20(3):151-153.

[12] ZOU Y, NIAN L X, CAI Y, et al. Dual-mode thin film bulk acoustic wave resonator and filter[J]. Journal of Applied Physics, 2020, 128(19):190901.

[13] LUO T C, LIU Y, ZOU Y, et al. Design and optimization of the dual-mode lamb wave resonator and dual-passband filter[J]. Micromachines, 2022, 13(1):87.

[14] CASSELLA C, OLIVA N, SOON J, et al. Super high frequency aluminum nitride two-dimensional-mode resonators with kr2exceeding 4.9%[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(2):105-107.

[15] LIN C M, YANTCHEV V, ZOU J, et al. Micromachined one-port aluminum nitride lamb wave resonators utilizing the lowest-order symmetric mode[J]. Journal of Microelectromechanical Systems, 2014, 23(1):78-91.

[16]诸政,吕世涛,张敖宇,等.环形氮化铝压电MEMS谐振器的支撑结构设计研究[J].传感器与微系统,2022,41(3):24-27.ZHU Z, LüS T, ZHANG A Y, et al. Support structure design research of circular AlN piezoelectric MEMS resonator[J]. Transducer and Microsystem Technologies, 2022,41(3):24-27.(in Chinese)

[17] CASSELLA C, HUI Y, QIAN Z Y, et al. Aluminum nitride cross-sectional lamémode resonators[J]. Journal of Microelectromechanical Systems, 2016, 25(2):275-285.

[18] GAO A, ZOU J. Extremely high Q AlN lamb wave resonators implemented by weighted electrodes[C]//Proceedings of the 2019 IEEE International Electron Devices Meeting(IEDM), December 7-11, 2019, San Francisco,CA, USA. New York:IEEE Xplore, 2019:34.5.1-34.5.4.

[19] LU R C, LI M H, YANG Y S, et al. Accurate extraction of large electromechanical coupling in piezoelectric MEMS resonators[J]. Journal of Microelectromechanical Systems,2019, 28(2):209-218.

[20] GONG S B, PIAZZA G. Design and analysis of lithiumniobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1):403-414.

[21]李丽,郑升灵,王胜福,等.高性能AlN薄膜体声波谐振器的研究[J].半导体技术,2013, 38(6):448-452.LI L, ZHENG S L, WANG S F, et al. Study on high performance AlN film bulk acoustic resonator[J]. Semiconductor Technology, 2013, 38(6):448-452.(in Chinese)

[22]王星宇,吕世涛,张敖宇,等.氮化铝Lamb波谐振器的支撑轴区域声反射结构研究[J].传感器与微系统,2022,41(9):20-24.WANG X Y, LüS T, ZHANG A Y, et al. Research of acoustic reflection structure in support shaft region for AlN Lamb wave resonators[J]. Transducer and Microsystem Technologies, 2022, 41(9):20-24.(in Chinese)

[23] POZAR D M. Microwave engineering[M]. 3rd ed. Beijing:Publishing House of Electronics Industry, 2008:223-227.

[24] LIU C, ZHU Y, WANG N, et al. Single-chip dual-band filters based on spurious-free dual-resonance Sc0.15Al0.85N laterally coupled alternating thickness(LCAT)mode resonators[C]//Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems(Transducers), June 20-24, 2021, Orlando, FL, USA.New York:IEEE Xplore, 2021:309-312.

基本信息:

DOI:10.12194/j.ntu.20230114001

中图分类号:TN751.2;TB383.2

引用信息:

[1]赵继聪,王星宇,孙海燕.基于氮化铝薄膜的二维模态谐振器双模结构设计与仿真[J].南通大学学报(自然科学版),2024,23(01):49-57.DOI:10.12194/j.ntu.20230114001.

基金信息:

国家自然科学基金面上项目(62174092)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文