1,863 | 2 | 134 |
下载次数 | 被引频次 | 阅读次数 |
质子交换膜(proton exchange membrane,PEM)电解水制氢技术将电能转化为化学能和热能,是一种绿色的制氢方式,具有响应速度快、电流密度高、结构紧凑等优点。对于质子交换膜电解水制氢系统建模,现有文献中鲜有整体描述电解槽电压、电流变化及系统各组件温度动态的集总参数模型。文章根据电化学基本原理及热力学定律,建立了PEM电解槽电压稳态模型和系统的温度动态模型,基于MATLAB/Simulink软件进行了仿真分析,将仿真结果与实验数据进行了对比,其中电压误差不超过0.02 V,温度误差不超过1.6 K,验证了模型的有效性,且所建立的模型能够描述和预测系统参数的变化,为系统设计及控制优化提供支撑。根据PEM电解槽的效率模型和仿真结果,分析了不同温度、压强对电解槽性能的影响,结果表明升高温度、降低压强能提高电解槽效率,其中温度是影响电解槽效率的主要因素。在搭建的仿真模型基础上,使用前馈PID控制器进行了温度控制,其中温度超调不超过0.6 K,调节时间在400 s以内,并与传统PID控制器进行了对比,结果表明前馈PID控制器具有超调小、响应速度快的优点。
Abstract:Proton exchange membrane(PEM) electrolyzer converts electrical energy into chemical and heat energy,which is a green hydrogen production method, featuring fast response, high current density, compact structure, and other advantages. In the modeling of proton exchange membrane electrolysis water hydrogen production system,existing literature lacks a lumped parameter model that comprehensively describes the voltage and current changes of the electrolysis cell, as well as the temperature dynamics of each component of the system. This study establishes a steady-state voltage model of PEM electrolyzer and the thermal dynamic model of the system based on the basic principles of electrochemistry and the laws of thermodynamics. The simulation analysis was carried out based on MATLAB/Simulink software, and the simulation results were compared with the experimental data. The results showed that the voltage error is less than 0.02 V, and the temperature error is less than 1.6 K, which verifies the validity of the model. The established model can describe and predict the behavior of system parameters and provide support for system design and control. According to the efficiency model of PEM electrolyzer and the simulation results, the influence of different temperature and pressure on the performance of the electrolyzer was analyzed. It is concluded that increasing the temperature and decreasing the pressure can improve the efficiency of the electrolyzer, with temperature being the main factor. Using the simulation model, a feedforward PID controller was employed for temperature control, achieving an overshoot of less than 0.6 K and a settling time within 400 seconds. Comparison with a traditional PID controller demonstrates that the feedforward PID controller has advantages in terms of reduced overshoot and faster response.
[1] FOLGADO F J, GONZáLEZ I, CALDERóN A J. Data acquisition and monitoring system framed in industrial internet of things for PEM hydrogen generators[J]. Internet of Things, 2023, 22:100795.
[2] NIROULA S, CHAUDHARY C, SUBEDI A, et al. Parametric modelling and optimization of alkaline electrolyzer for the production of green hydrogen[J]. IOP Conference Series:Materials Science and Engineering, 2023, 1279(1):012005.
[3]张翔.质子交换膜电解池(PEMEC)热力学模型构建及系统性能分析[D].北京:华北电力大学,2020.ZHANG X. Thermodynamics model and system analysis of proton exchange membrane electrolysis cell and stack system[D]. Beijing:North China Electric Power University,2020.(in Chinese)
[4]朱建红,顾菊平,任浩锋,等.基于DSP数据采集风电并网监控设计[J].南通大学学报(自然科学版),2022,21(2):79-87.ZHU J H, GU J P, REN H F, et al. Design of wind power grid-connected monitoring system based on DSP data collection[J]. Journal of Nantong University(Natural Science Edition), 2022, 21(2):79-87.(in Chinese)
[5] YIGIT T, SELAMET O F. Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system[J]. International Journal of Hydrogen Energy,2016, 41(32):13901-13914.
[6] BREZAK D, KOVA C A, FIRAK M. MATLAB/Simulink simulation of low-pressure PEM electrolyzer stack[J]. International Journal of Hydrogen Energy, 2023, 48(16):6158-6173.
[7] ABDIN Z, WEBB C J, GRAY E M A. Modelling and simulation of a proton exchange membrane(PEM)electrolyser cell[J]. International Journal of Hydrogen Energy,2015, 40(39):13243-13257.
[8] LEBBAL M E, LEC?UCHE S. Identification and monitoring of a PEM electrolyser based on dynamical modelling[J]. International Journal of Hydrogen Energy, 2009, 34(14):5992-5999.
[9] ULLEBERG?. Modeling of advanced alkaline electrolyzers:a system simulation approach[J]. International Journal of Hydrogen Energy, 2003, 28(1):21-33.
[10] ESPINOSA-LóPEZ M, DARRAS C, POGGI P, et al.Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer[J]. Renewable Energy, 2018,119:160-173.
[11] RIZWAN M, ALSTAD V, J?SCHKE J. Design considerations for industrial water electrolyzer plants[J]. International Journal of Hydrogen Energy, 2021, 46(75):37120-37136.
[12] MAAMOURI R, GUILBERT D, ZASADZINSKI M, et al.Proton exchange membrane water electrolysis:modeling for hydrogen flow rate control[J]. International Journal of Hydrogen Energy, 2021, 46(11):7676-7700.
[13] FOLGADO F J, GONZáLEZ I, CALDERóN A J. Simulation platform for the assessment of PEM electrolyzer models oriented to implement digital Replicas[J]. Energy Conversion and Management, 2022, 267:115917.
[14] ABOMAZID A M, EL-TAWEEL N A, FARAG H E Z.Novel analytical approach for parameters identification of PEM electrolyzer[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9):5870-5881.
[15] AFSHARI E, KHODABAKHSH S, JAHANTIGH N, et al.Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure PEM electrolyzer[J]. International Journal of Hydrogen Energy, 2021,46(19):11029-11040.
[16] FALC?O D S, PINTO A M F R. A review on PEM electrolyzer modelling:guidelines for beginners[J]. Journal of Cleaner Production, 2020, 261:121184.
[17] OLIVIER P, BOURASSEAU C, BOUAMAMA P B. Lowtemperature electrolysis system modelling:a review[J]. Renewable and Sustainable Energy Reviews, 2017, 78:280-300.
[18] DI魪GUEZ P M, URSUA A, SANCHIS P, et al. Thermal performance of a commercial alkaline water electrolyzer:experimental study and mathematical modeling[J]. International Journal of Hydrogen Energy, 2008, 33(24):7338-7354.
[19] QI R M, LI J R, LIN J, et al. Thermal modeling and controller design of an alkaline electrolysis system under dynamic operating conditions[J]. Applied Energy, 2023,332:120551.
[20]陈蕾,张少华,杨奕.恒压供水系统模糊PID控制策略研究[J].南通大学学报(自然科学版),2017, 16(1):24-28.CHEN L, ZHANG S H, YANG Y. Study on fuzzy PID control strategy of constant pressure water supply system[J].Journal of Nantong University(Natural Science Edition),2017, 16(1):24-28.(in Chinese)
[21]蔡金萍,李莉.基于改进PID算法的小区域温度控制模型仿真[J].计算机仿真,2015, 32(6):237-240.CAI J P, LI L. The small area temperature control model based on improved PID algorithm simulation[J]. Computer Simulation, 2015, 32(6):237-240.(in Chinese)
基本信息:
DOI:10.12194/j.ntu.20240415001
中图分类号:TQ116.21
引用信息:
[1]王辉东,姚海燕,郭强等.质子交换膜电解水制氢系统建模与仿真[J].南通大学学报(自然科学版),2024,23(04):45-53+63.DOI:10.12194/j.ntu.20240415001.
基金信息: