nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.24 74-84
AP2/ERF转录因子家族响应木本植物非生物胁迫的研究进展
基金项目(Foundation): 江苏省林业科技创新与推广项目(LYKJ[2023]02); 南通市社会民生重点专项-碳达峰碳中和专项(MS12022023); 南通大学大型仪器开放基金项目(KFJN2320,KFJN2326)
邮箱(Email): yjnkyy@163.com
DOI: 10.12194/j.ntu.20231207001
摘要:

木本植物是全球生态系统的重要支柱,在维护生态平衡中起着重要作用,其在生长过程中会受到多种非生物胁迫,如冷胁迫、干旱胁迫、盐胁迫等,这些胁迫会严重影响木本植物的生长发育。AP2/ERF(APETALA2/ethylene responsive factor)转录因子在木本植物中分布广泛,是植物最大的转录因子家族之一。文章总结了木本植物AP2/ERF转录因子的分类情况,探讨了AP2/ERF转录因子在木本植物响应非生物胁迫(冷、干旱、盐、淹水)中的关键作用。研究还发现,木本植物AP2/ERF转录因子家族中ERF和DREB亚家族成员数量最多,其中DREB亚家族成员CBF是木本植物冷胁迫信号转导的关键因子。该综述为更好地理解木本植物中AP2/ERF转录因子的功能及其在非生物响应中的作用提供了支撑。

Abstract:

Woody plants constitute fundamental components of global ecosystems, contributing significantly to ecological stability. Throughout their growth, they encounter various abiotic stresses, including cold, drought, salt, and flooding, which can substantially affect their development. The AP2/ERF(APETALA2/ethylene responsive factor)transcription factor family, one of the largest in plants, is widely present in woody species. This review outlines the classification of AP2/ERF transcription factors in woody plants and examines their roles in mediating responses to abiotic stresses, specifically cold, drought, salt, and flooding. Analysis reveals that the ERF and DREB subfamilies predominate within this family in woody plants, with the DREB subfamily member CBF identified as a critical element in cold stress signal transduction. These findings enhance understanding of the functions of AP2/ERF transcription factors in woody plants and their involvement in abiotic stress responses.

参考文献

[1]毕毓芳,诸葛强.林木非生物胁迫抗性基因工程研究进展[J].世界林业研究,2008, 21(5):30-36.BI Y F, ZHUGE Q. Progress in genetic engineering of forest trees under abiotic stresses[J]. World Forestry Research,2008, 21(5):30-36.(in Chinese)

[2]杨晓燕,熊炀,宫雪,等.亚热带地区主要阔叶用材树种的非生物胁迫研究进展[J].西南林业大学学报(自然科学),2023, 43(3):191-204.YANG X Y, XIONG Y, GONG X, et al. Advances in abiotic stress of main broad-leaved timber species in subtropical regions[J]. Journal of Southwest Forestry University(Natural Sciences), 2023, 43(3):191-204.(in Chinese)

[3]赵宝泉,邢锦城,温祝桂,等.林木盐胁迫响应机制研究进展[J].现代农业科技,2020(21):159-165.ZHAO B Q, XING J C, WEN Z G, et al. Research progress on salt stress response mechanism of forest trees[J]. Modern Agricultural Science and Technology, 2020(21):159-165.(in Chinese)

[4]杨艳梅,赵喜娟,聂语琪,等.草本拟南芥和木本毛果杨在冷胁迫下的研究进展[J].分子植物育种,2020, 18(17):5755-5764.YANG Y M, ZHAO X J, NIE Y Q, et al. Research progress of arabidopsis thaliana and populus trichocarpa under cold stress[J]. Molecular Plant Breeding, 2020, 18(17):5755-5764.(in Chinese)

[5]王丁,张丽琴,薛建辉.林木对干旱胁迫的生理与分子响应研究综述[J].安徽农业科学,2011, 39(25):15426-15431.WANG D, ZHANG L Q, XUE J H. A review about physiological and molecular responses to drought stress of forest tree[J]. Journal of Anhui Agricultural Sciences, 2011, 39(25):15426-15431.(in Chinese)

[6]孙海军,喻泓,肖曙光,等.林木耐旱机制研究进展[J].河南林业科技,2006, 26(1):22-23.SUN H J, YU H, XIAO S G, et al. Present research of forest drought-resistance mechanism[J]. Journal of Henan Forestry Science and Technology, 2006, 26(1):22-23.(in Chinese)

[7]韩佩尧,赵烨,田彦挺,等.植物耐盐机制及耐盐基因在杨树育种中的应用[J].分子植物育种,2021, 19(23):7977-7983.HAN P Y, ZHAO Y, TIAN Y T, et al. Mechanism of plant salt tolerance and application of salt tolerance gene in poplar breeding[J]. Molecular Plant Breeding, 2021, 19(23):7977-7983.(in Chinese)

[8] JOFUKU K D, DEN BOER B G, VAN MONTAGU M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell, 1994, 6(9):1211-1225.

[9]兰孟焦,后猛,肖满秋,等. AP2/ERF转录因子参与植物次生代谢和逆境胁迫响应的研究进展[J].植物遗传资源学报,2023, 24(5):1223-1235.LAN M J, HOU M, XIAO M Q, et al. Research progress of AP2/ERF transcription factors participating in plant secondary metabolism and stress response[J]. Journal of Plant Genetic Resources, 2023, 24(5):1223-1235.(in Chinese)

[10]丰锦,陈信波.抗逆相关AP2/EREBP转录因子研究进展[J].生物技术通报,2011(7):1-6.FENG J, CHEN X B. Research progress of AP2/EREBP transcription factors in stress tolerance[J]. Biotechnology Bulletin, 2011(7):1-6.(in Chinese)

[11] FENG K, HOU X L, XING G M, et al. Advances in AP2/ERF super-family transcription factors in plant[J]. Critical Reviews in Biotechnology, 2020, 40(6):750-776.

[12] OWJI H, HAJIEBRAHIMI A, SERADJ H, et al. Identification and functional prediction of stress responsive AP2/ERF trans cription factors in Brassica napus by genomewide analysis[J]. Computational Biology and Chemistry,2017, 71:32-56.

[13] SAKUMA Y, LIU Q, DUBOUZET J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression[J]. Biochemical and Biophysical Research Communications, 2002, 290(3):998-1009.

[14] OHME-TAKAGI M, SHINSHI H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. The Plant Cell, 1995, 7(2):173-182.

[15] STOCKINGER E J, GILMOUR S J, THOMASHOW M F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(3):1035-1040.

[16] THOMASHOW M F. PLANT COLD ACCLIMATION:freezing tolerance genes and regulatory mechanisms[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50:571-599.

[17] KAGAYA Y, OHMIYA K, HATTORI T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants[J]. Nucleic Acids Research, 1999,27(2):470-478.

[18] NAKANO T, SUZUKI K, FUJIMURA T, et al. Genomewide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2):411-432.

[19] ZHANG G Y, CHEN M, CHEN X P, et al. Phylogeny,gene structures, and expression patterns of the ERF gene family in soybean(Glycine max L.)[J]. Journal of Experimental Botany, 2008, 59(15):4095-4107.

[20] RASHID M, HE G Y, YANG G X, et al. AP2/ERF transcription factor in rice:genome-wide canvas and syntenic relationships between monocots and eudicots[J]. Evolutionary Bioinformatics Online, 2012, 8:321-355.

[21] ZHAO Y, MA R Y, XU D L, et al. Genome-wide identification and analysis of the AP2 transcription factor gene family in wheat(Triticum aestivum L.)[J]. Frontiers in Plant Science, 2019, 10:1286.

[22] TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, Populus trichocarpa(Torr.&Gray)[J]. Science, 2006, 313(5793):1596-1604.

[23] ZHUANG J, CAI B, PENG R H, et al. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa[J]. Biochemical and Biophysical Research Communications, 2008, 371(3):468-474.

[24] ZHANG C H, SHANGGUAN L F, MA R J, et al.Genome-wide analysis of the AP2/ERF superfamily in peach(Prunus persica)[J]. Genetics and Molecular Research, 2012, 11(4):4789-4809.

[25] ZHUANG J, YAO Q H, XIONG A S, et al. Isolation,phylogeny and expression patterns of AP2-like genes in apple(Malus)×(domestica) Borkh[J]. Plant Molecular Biology Reporter, 2011, 29(1):209-216.

[26] GIRARDI C L, ROMBALDI C V, DAL CERO J, et al.Genome-wide analysis of the AP2/ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis[J]. Scientia Horticulturae, 2013, 151:112-121.

[27] ITO T M, POLIDO P B, RAMPIM M C, et al. Genomewide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange(Citrus sinensis)[J].Genetics and Molecular Research, 2014, 13(3):7839-7851.

[28] HU Y T, XU Z C, TIAN Y, et al. Genome-wide identification and analysis of AP2/ERF transcription factors related to camptothecin biosynthesis in Camptotheca acuminata[J]. Chinese Journal of Natural Medicines, 2020, 18(8):582-593.

[29] ZHANG S T, ZHU C, LYU Y M, et al. Genome-wide identification, molecular evolution, and expression analysis provide new insights into the APETALA2/ethylene responsive factor(AP2/ERF)superfamily in Dimocarpus longan lour[J]. BMC Genomics, 2020, 21(1):62.

[30]戴晓港,李淑娴.柳树AP2/ERF基因家族全基因组鉴定和表达分析[J].江苏林业科技,2021, 48(5):1-12.DAI X G, LI S X. Genome-wide identification and characterization of the AP2/ERF gene family in willow[J]. Journal of Jiangsu Forestry Science&Technology, 2021, 48(5):1-12.(in Chinese)

[31] ZHANG J, SHI S Z, JIANG Y N, et al. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow(Salix matsudana)[J]. PeerJ, 2021, 9:e11076.

[32]袁红慧,李琳玲,程华,等.银杏AP2/ERF转录因子鉴定及其ERF家族在逆境胁迫下的表达分析[J].分子植物育种,2022, 20(1):113-123.YUAN H H, LI L L, CHENG H, et al. Identification of AP2/ERF transcription factors in ginkgo biloba and the expression of ERF gene family under abiotic stress[J]. Molecular Plant Breeding, 2022, 20(1):113-123.(in Chinese)

[33] ZHOU L X, YARRA R. Genome-wide identification and characterization of AP2/ERF transcription factor family genes in oil palm under abiotic stress conditions[J]. International Journal of Molecular Sciences, 2021, 22(6):2821.

[34] ZHAO M H, LI Y, ZHANG X X, et al. Genome-wide identification of AP2/ERF superfamily genes in juglans mandshurica and expression analysis under cold stress[J].International Journal of Molecular Sciences, 2022, 23(23):15225.

[35] YANG B B, YAO X H, ZENG Y R, et al. Genome-wide identification, characterization, and expression profiling of AP2/ERF superfamily genes under different development and abiotic stress conditions in pecan(Carya illinoinensis)[J]. International Journal of Molecular Sciences, 2022, 23(6):2920.

[36] HE W, LUO L, XIE R, et al. Genome-wide identification and functional analysis of the AP2/ERF transcription factor family in citrus rootstock under waterlogging stress[J]. International Journal of Molecular Sciences, 2023, 24(10):8989.

[37] SUN S, LIANG X X, CHEN H, et al. Identification of AP2/ERF transcription factor family genes and expression patterns in response to drought stress in pinusmassoniana[J]. Forests, 2022, 13(9):1430.

[38] TANG Y H, QIN S S, GUO Y L, et al. Genome-wide analysis of the AP2/ERF gene family in physic nut and overexpression of the JcERF011 gene in rice increased its sensitivity to salinity stress[J]. PLoS One, 2016, 11(3):e0150879.

[39] WAN R, SONG J H, LV Z Y, et al. Genome-wide identification and comprehensive analysis of the AP2/ERF gene family in pomegranate fruit development and postharvest preservation[J]. Genes, 2022, 13(5):895.

[40] XU Y, LI X N, YANG X, et al. Genome-wide identification and molecular characterization of the AP2/ERF superfamily members in sand pear(Pyrus pyrifolia)[J]. BMC Genomics, 2023, 24(1):32.

[41]张麒,陈静,李俐,等.植物AP2/ERF转录因子家族的研究进展[J].生物技术通报,2018, 34(8):1-7.ZHANG Q, CHEN J, LI L, et al. Research progress on plant AP2/ERF transcription factor family[J]. Biotechnology Bulletin, 2018, 34(8):1-7.(in Chinese)

[42]刘强,赵南明,YAMAGUCH-SHINOZAKI K,等. DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2000, 45(1):11-16.

[43]洪林,杨蕾,杨海健,等. AP2/ERF转录因子调控植物非生物胁迫响应研究进展[J].植物学报,2020, 55(4):481-496.HONG L, YANG L, YANG H J, et al. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress[J]. Chinese Bulletin of Botany,2020, 55(4):481-496.(in Chinese)

[44]刘晓丹,李海燕. CBF转录因子在提高植物抗逆性中的作用[J].安徽农业科学,2009, 37(32):15749-15751.LIU X D, LI H Y. Roles of CBF transcription factor in enhancing stress resistance of plant[J]. Journal of Anhui Agricultural Sciences, 2009, 37(32):15749-15751.(in Chinese)

[45] KIDOKORO S, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Transcriptional regulatory network of plant cold-stress responses[J]. Trends in Plant Science, 2022,27(9):922-935.

[46] LIU Q, KASUGA M, SAKUMA Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. The Plant Cell, 1998, 10(8):1391-1406.

[47] BENEDICT C, SKINNER J S, MENG R G, et al. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp[J]. Plant, Cell&Environment, 2006, 29(7):1259-1272.

[48] LV K W, LI J, ZHAO K, et al. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species[J]. Plant Science, 2020, 292:110375.

[49] PENG T, ZHU X F, DUAN N, et al. PtrBAM1, a β-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels[J]. Plant, Cell&Environment, 2014,37(12):2754-2767.

[50] ZHANG Y, MING R H, KHAN M, et al. ERF9 of Poncirus trifoliata(L.)Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene[J]. Plant Biotechnology Journal, 2022, 20(1):183-200.

[51] TANG M J, LIU X F, DENG H P, et al. Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana[J]. Plant Science, 2011, 181(6):623-631.

[52] WANG M, DAI W S, DU J, et al. ERF109 of trifoliate orange(Poncirus trifoliata(L.)Raf.)contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process[J]. Plant Biotechnology Journal,2019, 17(7):1316-1332.

[53] KHAN M, HU J B, DAHRO B, et al. ERF108 from Poncirus trifoliata(L.)Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS[J]. The Plant Journal, 2021, 108(3):705-724.

[54] HAN D G, HAN J X, XU T L, et al. Overexpression of MbERF12, an ERF gene from Malus baccata(L.)Borkh,increases cold and salt tolerance in Arabidopsis thaliana associated with ROS scavenging through ethylene signal transduction[J]. In Vitro Cellular&Developmental Biology-Plant, 2021, 57(5):760-770.

[55] DU M F, DING G J, CAI Q. The transcriptomic responses of pinus massoniana to drought stress[J]. Forests, 2018, 9(6):326.

[56] CHEN N N, QIN J J, TONG S F, et al. One AP2/ERF transcription factor positively regulates pi uptake and drought tolerance in poplar[J]. International Journal of Molecular Sciences, 2022, 23(9):5241.

[57] HUAN X H, WANG X Q, ZOU S Q, et al. Transcription factor ERF194 modulates the stress-related physiology to enhance drought tolerance of poplar[J]. International Journal of Molecular Sciences, 2023, 24(1):788.

[58] WANG X H, HAN H Y, YAN J, et al. A new AP2/ERF transcription factor from the oil plant Jatropha curcas confers salt and drought tolerance to transgenic tobacco[J].Applied Biochemistry and Biotechnology, 2015, 176(2):582-597.

[59] OLIVEIRA P N, MATIAS F, MART魱NEZ-ANDUJAR C,et al. Overexpression of TgERF1, a transcription factor from Tectona grandis, increases tolerance to drought and salt stress in tobacco[J]. International Journal of Molecular Sciences, 2023, 24(4):4149.

[60]邵文靖,敖特根白音,郎明林. AP2/ERF转录因子对植物非生物胁迫的应答机制研究进展[J].分子植物育种,2020, 18(15):4981-4988.SHAO W J, AO T, LANG M L. Research advances on the mechanism of AP2/ERF transcriptional factors in response to abiotic stresses in plants[J]. Molecular Plant Breeding,2020, 18(15):4981-4988.(in Chinese)

[61] CHEN N N, TONG S F, TANG H, et al. The PalERF109transcription factor positively regulates salt tolerance via PalHKT1;2 in Populus alba var. pyramidalis[J]. Tree Physiology, 2020, 40(6):717-730.

[62] HUANG Q H, HUA X, ZHANG Q, et al. Identification and functional verification of salt tolerance hub genes in Salix matsudana based on QTL and transcriptome analysis[J]. Environmental and Experimental Botany, 2023, 215:105470.

[63] CHEN Y H, HUANG Q H, HUA X, et al. A homolog of AtCBFs, SmDREB A1-4, positively regulates salt stress tolerance in Arabidopsis thaliana and Salix matsudana[J].Plant Physiology and Biochemistry, 2023, 202:107963.

[64] CHEN J H, XIA X L, YIN W L. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica[J]. Biochemical and Biophysical Research Communications, 2009, 378(3):483-487.

[65] SUN J W, PENG X J, FAN W H, et al. Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera[J].Gene, 2014, 535(2):140-149.

[66] YANG H, YU C, YAN J, et al. Overexpression of the Jatropha curcas JcERF1 gene coding an AP2/ERF-type transcription factor increases tolerance to salt in transgenic tobacco[J]. Biochemistry Biokhimiia, 2014, 79(11):1226-1236.

[67] TANG W, CHARLES T M, NEWTON R J. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine(Pinus Virginiana Mill.)confers multiple stress tolerance and enhances organ growth[J]. Plant Molecular Biology, 2005, 59(4):603-617.

[68] TANG W, NEWTON R J, LI C, et al. Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1gene is associated with the polyamine biosynthesis[J]. Plant Cell Reports, 2007, 26(1):115-124.

[69] WANG S J, HUANG J J, WANG X D, et al. PagERF16of Populus promotes lateral root proliferation and sensitizes to salt stress[J]. Frontiers in Plant Science, 2021, 12:669143.

[70]杨杰,唐志璇,杜雅雯,等.园林植物对淹水胁迫的生理及分子响应机理研究进展[J].南通大学学报(自然科学版),2023, 22(1):34-43.YANG J, TANG Z X, DU Y W, et al. Research progress in physiological and molecular responses of garden plants to waterlogging tolerance[J]. Journal of Nantong University(Natural Science Edition), 2023, 22(1):34-43.(in Chinese)

[71]王丽娟,王毅,陆斌,等.油橄榄AP2/ERF转录因子鉴定及水胁迫表达分析[J].广西植物,2022, 42(12):2032-2043.WANG L J, WANG Y, LU B, et al. Identification and expression analysis of AP2/ERF transcription factor under water stress in Olea europaea[J]. Guihaia, 2022, 42(12):2032-2043.(in Chinese)

[72] SHANG J Z, SONG P H, MA B, et al. Identification of the mulberry genes involved in ethylene biosynthesis and signaling pathways and the expression of MaERF-B2-1and MaERF-B2-2 in the response to flooding stress[J].Functional&Integrative Genomics, 2014, 14(4):767-777.

[73] ZHOU M L, MA J T, ZHAO Y M, et al. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica[J]. Gene, 2012, 506(1):10-17.

[74] ZHANG J, YIN X R, LI H, et al. ETHYLENE RESPONSE FACTOR39-MYB8 complex regulates low-temperature-induced lignification of loquat fruit[J]. Journal of Experimental Botany, 2020, 71(10):3172-3184.

[75] AN J P, ZHANG X W, XU R R, et al. Apple MdERF4negatively regulates salt tolerance by inhibiting MdERF3transcription[J]. Plant Science, 2018, 276:181-188.

[76] AN J P, YAO J F, XU R R, et al. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response[J]. Physiologia Plantarum, 2018,164(3):279-289.

基本信息:

DOI:10.12194/j.ntu.20231207001

中图分类号:Q943.2

引用信息:

[1]黄倩慧,田博雯,华炫等.AP2/ERF转录因子家族响应木本植物非生物胁迫的研究进展[J].南通大学学报(自然科学版),2025,24(01):74-84.DOI:10.12194/j.ntu.20231207001.

基金信息:

江苏省林业科技创新与推广项目(LYKJ[2023]02); 南通市社会民生重点专项-碳达峰碳中和专项(MS12022023); 南通大学大型仪器开放基金项目(KFJN2320,KFJN2326)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文