547 | 0 | 176 |
下载次数 | 被引频次 | 阅读次数 |
面向新一代无线通信和多源异构网络系统,传统的密码机制和安全协议在物联网环境下存在较大的安全隐患,亟需更加高效、可靠的安全识别技术。射频指纹识别(radio frequency fingerprinting identification,RFFI)作为一种基于设备固有信号特征进行识别的技术,为解决无线设备的身份识别和安全问题提供了新的思路和手段。现有的综述大多从较为宽泛的视角对RFFI的研究现状进行分析,未能对RFFI的整体框架进行全面系统的阐述,缺乏对各个关键部分的深入总结和讨论,无法满足当前研究的系统性需求。文章基于RFFI的研究现状,提出了一个系统的整体框架,从射频指纹(radio frequency fingerprint,RFF)的基础出发,全面介绍了RFF的产生机理及特性;从统计特征和深度学习(deep learning,DL)特征2个角度出发,综述了RFF的分类及其识别方法,并对二者进行了比较分析,辅以实验验证分析;最后,重点分析了智能RFFI领域的几个潜在研究方向,并展望了RFF技术在未来的发展趋势,旨在为智能RFFI的研究与实际应用提供理论启发和实践参考。
Abstract:In the context of next-generation wireless communications and multi-source heterogeneous network systems, traditional cryptographic mechanisms and security protocols pose significant risks in Internet of things(IoT) environments. There is an urgent demand for more efficient and reliable identity authentication technologies. Radio frequency fingerprinting identification(RFFI), which leverages the inherent signal characteristics of wireless devices, provides a novel approach to addressing device authentication and security challenges. Unlike existing reviews that focus on selected aspects of RFFI from a broad perspective, this paper proposes a systematic and comprehensive framework.It begins by explaining the fundamental principles and characteristics of radio frequency fingerprint(RFF). Then, from the perspectives of statistical features and deep learning(DL)-based features, the paper presents an in-depth review of RFFI classification and identification methods, along with a comparative analysis of the two approaches supported by experimental validation. Finally, several potential research directions in intelligent RFFI are discussed, and future trends of RFF technology are explored, aiming to offer both theoretical insights and practical guidance for ongoing research and real-world applications.
[1] LAGHARI A A, WU K, LAGHARI R A, et al. A review and state of art of Internet of things(IoT)[J]. Archives of Computational Methods in Engineering, 2021, 29:1395-1413.
[2] ZHANG J Q, LI G Y, MARSHALL A, et al. A new frontier for IoT security emerging from three decades of key generation relying on wireless channels[J]. IEEE Access,2020, 8:138406-138446.
[3]张振,贾济铖,康健,等.射频指纹识别技术方法综述[J].无线电通信技术,2021, 47(3):249-258.ZHANG Z, JIA J C, KANG J, et al. Overview of RF fingerprint identification technology methods[J]. Radio Communications Technology, 2021, 47(3):249-258.(in Chinese)
[4] SOLTANIEH N, NOROUZI Y, YANG Y, et al. A review of radio frequency fingerprinting techniques[J]. IEEE Journal of Radio Frequency Identification, 2020, 4(3):222-233.
[5]桂冠,陶梦圆,王诚,等.面向特定辐射源识别的小样本学习方法综述[J].南通大学学报(自然科学版),2023,22(3):1-16.GUI G, TAO M Y, WANG C, et al. Survey of few-shot learning methods for specific emitter identification[J]. Journal of Nantong University(Natural Science Edition), 2023,22(3):1-16.(in Chinese)
[6]李超群,王金明.射频指纹识别技术研究综述[J].信息与电脑(理论版),2022, 34(10):196-198.LI C Q, WANG J M. Review of radio frequency fingerprint identification technology[J]. Information&Computer, 2022,34(10):196-198.(in Chinese)
[7]曾勇虎,陈翔,林云,等.射频指纹识别的研究现状及趋势[J].电波科学学报,2020, 35(3):305-315.ZENG Y H, CHEN X, LIN Y, et al. Review of radio frequency fingerprinting identification[J]. Chinese Journal of Radio Science, 2020, 35(3):305-315.(in Chinese)
[8] WAN H, WANG Q, FU X, et al. VC-SEI:robust variable-channel specific emitter identification method using semi-supervised domain adaptation[J]. IEEE Transactions on Wireless Communications, 2024, 23(12):18228-18239.
[9] ABBAS S, ABU TALIB M, NASIR Q, et al. Radio frequency fingerprinting techniques for device identification:a survey[J]. International Journal of Information Security,2024, 23(2):1389-1427.
[10] LI H, TANG Y, LIN D, et al. A survey of few-shot learning for radio frequency fingerprint identification[M]//Artificial Intelligence for Communications and Networks. Cham:Springer International Publishing, 2021:433-443.
[11]俞佳宝,胡爱群,朱长明,等.无线通信设备的射频指纹提取与识别方法[J].密码学报,2016, 3(5):433-446.YU J B, HU A Q, ZHU C M, et al. RF fingerprinting extraction and identification of wireless communication devices[J]. Journal of Cryptologic Research, 2016, 3(5):433-446.(in Chinese)
[12] DANEV B, ZANETTI D, CAPKUN S. On physical-layer identification of wireless devices[J]. ACM Computing Surveys, 2012, 45(1):1-29.
[13] SHEN G X, ZHANG J Q, MARSHALL A, et al. Towards scalable and channel-robust radio frequency fingerprint identification for LoRa[J]. IEEE Transactions on Information Forensics and Security, 2022, 17:774-787.
[14] LIU Y X, WANG J, NIU S T, et al. ADS-B signals records for non-cryptographic identification and incremental learning[EB/OL](2021-05-08)[2024-12-10]. https://dx. doi. org/10. 21227/1bxc-ke87.
[15] TU Y, LIN Y, ZHA H R, et al. Large-scale real-world radio signal recognition with deep learning[J]. Chinese Journal of Aeronautics, 2022, 35(9):35-48.
[16] EZUMA M, ERDEN F, KUMAR ANJINAPPA C, et al.Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and bluetooth interference[J].IEEE Open Journal of the Communications Society, 2019,1:60-76.
[17] UZUNDURUKAN E, DALVEREN Y, KARA A. A database for the radio frequency fingerprinting of bluetooth devices[J]. Data, 2020, 5(2):55.
[18] REUS-MUNS G, JAISINGHANI D, SANKHE K, et al.Trust in 5G open RANs through machine learning:RF fingerprinting on the POWDER PAWR platform[C]//Proceedings of the 2020 IEEE Global Communications Conference, December 7-11, 2020, Taipei, China. New York:IEEE Xplore, 2020:1-6.
[19] SHI J X, PENG L N, FU H, et al. Robust RF fingerprint extraction based on cyclic shift characteristic[J]. IEEE Internet of Things Journal, 2023, 10(21):19218-19233.
[20] ELMAGHBUB A, HAMDAOUI B, WONG W K. ADLID:adversarial disentanglement learning for wireless device fingerprinting temporal domain adaptation[C]//Proceedings of the IEEE International Conference on Communications,May 28-June 1, 2023, Rome, Italy. New York:IEEE Xplore, 2023:6199-6204.
[21] ELMAGHBUB A, HAMDAOUI B, ELMAGHBUB A, et al. EPS:distinguishable IQ data representation for domainadaptation learning of device fingerprints[EB/OL].(2023-08-08)[2024-12-10]. https://doi.org/10.48550/arXiv.2308.04467.
[22] ur REHMAN S, SOWERBY K, COGHILL C. RF fingerprint extraction from the energy envelope of an instantaneous transient signal[C]//Proceedings of the 2012 Australian Communications Theory Workshop(AusCTW), January 30-February 2, 2012, Wellington, New Zealand. New York:IEEE Xplore, 2012:90-95.
[23] HUANG L F, WU X P, ZHAO C D, et al. Identification of radio transmitters fingerprint based on curve fitting[C]//Proceedings of the 2013 IEEE International Conference on Signal Processing, Communication and Computing(ICSPCC2013), August 5-8, 2013, Kunming, China. New York:IEEE Xplore, 2013:1-5.
[24] YANG K, KANG J, JANG J, et al. Multimodal sparse representation-based classification scheme for RF fingerprinting[J]. IEEE Communications Letters, 2019, 23(5):867-870.
[25]吕敏.一种敌我识别辐射源暂态信号指纹特征提取方法[J].电讯技术,2020, 60(7):803-808.LüM. A fingerprint feature extraction method of transient signal of IFF emitter[J]. Telecommunication Engineering,2020, 60(7):803-808.(in Chinese)
[26] DANEV B, CAPKUN S. Transient-based identification of wireless sensor nodes[C]//Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, April 13-16, 2009, San Francisco, CA, USA.New York:IEEE Xplore, 2009:25-36.
[27] DANEV B, HEYDT-BENJAMIN T S, CAPKUN S. Physical-layer identification of RFID devices[C]//Proceedings of the 18th USENIX Security Symposium. Montreal, Canada:USENIX Association, 2009:199-214.
[28] SUSKI W C II, TEMPLE M A, MENDENHALL M J, et al. Radio frequency fingerprinting commercial communication devices to enhance electronic security[J]. International Journal of Electronic Security and Digital Forensics, 2008,1(3):301.
[29] SUSKI W C II, TEMPLE M A, MENDENHALL M J, et al. Using spectral fingerprints to improve wireless network security[C]//Proceedings of the 2008 IEEE Global Telecommunications Conference, November 30-December 4, 2008,New Orleans, LO. New York:IEEE Xplore, 2008:1-5.
[30] BALDINI G, GENTILE C. Transient-based Internet of Things emitter identification using convolutional neural networks and optimized general linear chirplet transform[J].IEEE Communications Letters, 2020, 24(7):1482-1486.
[31]蒋平,谢跃雷.一种民用小型无人机的射频指纹识别方法[J].电讯技术,2021, 61(6):737-743.JIANG P, XIE Y L. A radio frequency fingerprint identification method for civil small UAVs[J]. Telecommunication Engineering, 2021, 61(6):737-743.(in Chinese)
[32] SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3):581-591.
[33] REN D F, ZHANG T. Specific emitter identification based on intrinsic time-scale-decomposition and image texture feature[C]//Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks(ICCSN), May 6-8, 2017, Guangzhou, China. New York:IEEE Xplore, 2017:1302-1307.
[34] TIAN Q, LIN Y, GUO X H, et al. New security mechanisms of high-reliability IoT communication based on radio frequency fingerprint[J]. IEEE Internet of Things Journal,2019, 6(5):7980-7987.
[35]陈天舒,胡爱群,姜禹.基于功率谱特征的Wi-Fi射频指纹提取方法[J].信息安全学报,2021, 6(2):1-11.CHEN T S, HU A Q, JIANG Y. Power spectrum based Wi-Fi RF fingerprint extraction method[J]. Journal of Cyber Security, 2021, 6(2):1-11.(in Chinese)
[36] ZHANG J W, WANG F G, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6):1192-1205.
[37] PATEL H. Non-parametric feature generation for RF-fingerprinting on ZigBee devices[C]//Proceedings of the 2015IEEE Symposium on Computational Intelligence for Security and Defense Applications(CISDA), May 26-28, 2015,Verona, NY, USA. New York:IEEE Xplore, 2015:1-5.
[38] HAO P, WANG X B, BEHNAD A. Relay authentication by exploiting I/Q imbalance in amplify-and-forward system[C]//Proceedings of the 2014 IEEE Global Communications Conference, December 8-12, 2014, Austin, TX, USA.New York:IEEE Xplore, 2014:613-618.
[39] ZHUO F, HUANG Y L, CHEN J. Radio frequency fingerprint extraction of radio emitter based on I/Q imbalance[J].Procedia Computer Science, 2017, 107:472-477.
[40]王正伟,郭虹莉,杨雪洲.载频稳定度在射频指纹识别中的应用研究[J].电子科技,2019, 32(9):46-50.WANG Z W, GUO H L, YANG X Z. Radio frequency fingerprinting identification based on carrier frequency stability[J]. Electronic Science and Technology, 2019, 32(9):46-50.(in Chinese)
[41]崔正阳,胡爱群,彭林宁.一种基于轮廓特征的射频指纹识别方法[J].信息网络安全,2017, 17(10):75-80.CUI Z Y, HU A Q, PENG L N. A method of RF fingerprint recognition based on contour feature[J]. Netinfo Security, 2017, 17(10):75-80.(in Chinese)
[42] PENG L N, HU A Q, ZHANG J Q, et al. Design of a hybrid RF fingerprint extraction and device classification scheme[J]. IEEE Internet of Things Journal, 2019, 6(1):349-360.
[43] SHI Y, JENSEN M A. Improved radiometric identification of wireless devices using MIMO transmission[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(4):1346-1354.
[44] RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep learning convolutional neural networks for radio identification[J]. IEEE Communications Magazine, 2018, 56(9):146-152.
[45] YAN G L, CAI Z X, LIU Y C, et al. Intelligent specific emitter identification using complex-valued convolutional neural network[C]//Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology(ICCT), October 20-22, 2023, Wuxi, China. New York:IEEE, 2023:1259-1263.
[46] DING L D, WANG S L, WANG F G, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12):2591-2594.
[47] BALDINI G, GENTILE C, GIULIANI R, et al. Comparison of techniques for radiometric identification based on deep convolutional neural networks[J]. Electronics Letters,2019, 55(2):90-92.
[48] PAN Y W, YANG S H, PENG H, et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7:54425-54434.
[49] PENG L N, ZHANG J Q, LIU M, et al. Deep learning based RF fingerprint identification using differential constellation trace figure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1):1091-1095.
[50] LIN Y, TU Y, DOU Z, et al. Contour stella image and deep learning for signal recognition in the physical layer[J].IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1):34-46.
[51]袁泽霖.电磁信号的射频指纹识别技术研究[D].电子科技大学,2021.YUAN Z L. Research on radio frequency fingerprint identification technology of electromagnetic signals[D]. University of Electronic Science and Technology of China, 2021.(in Chinese)
[52] SHEN G X, ZHANG J Q, MARSHALL A, et al. Radio frequency fingerprint identification for LoRa using deep learning[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8):2604-2616.
[53] SHEN G X, ZHANG J Q, MARSHALL A, et al. Radio frequency fingerprint identification for security in low-cost IoT devices[C]//Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, October31-November 3, 2021, Pacific Grove, CA, USA. New York:IEEE Xplore, 2021:309-313.
[54] GRITSENKO A, WANG Z F, JIAN T, et al. Finding a′new′needle in the haystack:unseen radio detection in large populations using deep learning[C]//Proceedings of the 2019 IEEE International Symposium on Dynamic Spectrum Access Networks(DySPAN), November 11-14,2019, Newark, NJ, USA. New York:IEEE Xplore, 2019:1-10.
[55] YIN L J, FU X, SHI S N, et al. Few-shot domain adaption-based specific emitter identification under varying modulation[C]//Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology(ICCT),October 20-22, 2023, Wuxi, China. New York:IEEE Xplore, 2023:1439-1443.
[56] GUO Y J, ZHANG J Q, PETER HONG Y W. Deep learning-enhanced physical layer authentication for mobile devices[C]//Proceedings of the 2023 IEEE Global Communications Conference, December 4-8, 2023, Kuala Lumpur,Malaysia. New York:IEEE Xplore, 2023:826-831.
[57] CAI Z X, WANG Y, JIANG Q, et al. Toward intelligent lightweight and efficient UAV identification with RF fingerprinting[J]. IEEE Internet of Things Journal, 2024, 11(15):26329-26339.
[58] HUA M Y, ZHANG Y B, SUN J L, et al. Specific emitter identification using adaptive signal feature embedded knowledge graph[J]. IEEE Internet of Things Journal, 2024,11(3):4722-4734.
[59] LIU C, FU X, WANG Y, et al. Overcoming data limitations:a few-shot specific emitter identification method using self-supervised learning and adversarial augmentation[J].IEEE Transactions on Information Forensics and Security,2023, 19:500-513.
[60] WANG Y, GUI G, LIN Y, et al. Few-shot specific emitter identification via deep metric ensemble learning[J]. IEEE Internet of Things Journal, 2022, 9(24):24980-24994.
[61] XU L, FU X, WANG Y, et al. Enhanced few-shot specific emitter identification via phase shift prediction and decoupling[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(1):145-155.
[62] FU X, WANG Y, LIN Y, et al. Toward robust open-set radiofrequency signal identification in Internet of Things using hypersphere manifold embedding[J]. IEEE Internet of Things Journal, 2024, 11(24):41235-41247.
[63] FU X, SHI S N, WANG Y, et al. Semi-supervised specific emitter identification via dual consistency regularization[J]. IEEE Internet of Things Journal, 2023, 10(21):19257-19269.
[64] PENG Y, HOU C B, ZHANG Y B, et al. Supervised contrastive learning for RFF identification with limited samples[J]. IEEE Internet of Things Journal, 2023, 10(19):17293-17306.
[65] ZHANG X X, ZHAO H T, ZHU H B, et al. NAS-AMR:neural architecture search-based automatic modulation recognition for integrated sensing and communication systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(3):1374-1386.
[66] TU Y, LIN Y, ZHA H R, et al. Large-scale real-world radio signal recognition with deep learning[J]. Chinese Journal of Aeronautics, 2022, 35(9):35-48.
[67] ZHENG S L, ZHOU X Y, ZHANG L X, et al. Toward next-generation signal intelligence:a hybrid knowledge and data-driven deep learning frame work for radio signal classification[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(3):564-579.
[68]刘昕,陈文华,吴汇波,等.功放数字预失真线性化技术发展趋势与挑战[J].中国科学:信息科学,2022, 52(4):569-595.LIU X, CHEN W H, WU H B, et al. Digital predistortion:development trends and key techniques[J]. Scientia Sinica(Informationis), 2022, 52(4):569-595.(in Chinese)
[69]赵雅琴,谢丹,吴龙文,等.数字预失真下的辐射源个体识别技术[J].电子学报,2023, 51(11):3331-3342.ZHAO Y Q, XIE D, WU L W, et al. Specific emitter identification under digital pre-distortion[J]. Acta Electronica Sinica, 2023, 51(11):3331-3342.(in Chinese)
[70] YAO Z S, PENG Y, WANG Y, et al. A novel radio frequency fingerprint concealment method based on IQ imbalance compensation and digital pre-distortion[J]. IEEE Transactions on Information Forensics and Security, 2024,19:7349-7361.
[71] REHMAN S U, SOWERBY K W, ALAM S, et al. Radio frequency fingerprinting and its challenges[C]//Proceedings of the 2014 IEEE Conference on Communications and Network Security, October 29-31, 2014, San Francisco,CA, USA. New York:IEEE Xplore, 2014:496-497.
[72] ZHANG J Q, WOODS R, SANDELL M, et al. Radio frequency fingerprint identification for narrowband systems,modelling and classification[J]. IEEE Transactions on Information Forensics and Security, 2021, 16:3974-3987.
[73]杜明洋,杜蒙,潘继飞,等.基于生成对抗网络的雷达脉内信号去噪与识别[J].西安电子科技大学学报,2023,50(6):133-147.DU M Y, DU M, PAN J F, et al. Generative adversarial model for radar intra-pulse signal denois ing and recognition[J]. Journal of Xidian University, 2023, 50(6):133-147.(in Chinese)
基本信息:
DOI:10.12194/j.ntu.20250105001
中图分类号:TN918.4
引用信息:
[1]闫高丽,付雪,王禹等.面向射频指纹信号分析与智能识别的研究综述[J].南通大学学报(自然科学版),2025,24(02):1-21.DOI:10.12194/j.ntu.20250105001.
基金信息:
国家自然科学基金面上基金项目(62471247)