高分辨率合成孔径雷达图像相干斑研究Review of speckle on high resolution synthetic aperture radar imagery
许致火,李恒超
XU Zhihuo,LI Hengchao
摘要(Abstract):
理解相干斑机理、建立物理表征模型是理解合成孔径雷达(synthetic aperture radar,SAR)图像的理论依据。随着SAR技术水平不断发展,图像分辨率也不断提高,其相干斑发生了由完全发展到不完全发展的根本变化。文章分析了SAR图像分辨率以及分辨单元内散射体个数,总结了高分辨率SAR图像相干斑模型研究进展,介绍了近些年代表性SAR相干斑抑制方法,展望了未来相干斑研究的一些趋势,为提升高分辨率SAR图像质量后续研究提供一定的参考。
Understanding the speckle mechanism and modelling the physical representation is the theoretical basis for understanding synthetic aperture radar(SAR) images. As SAR technology continues to develop, the resolution of image increases, and its speckle undergoes a fundamental change from fully developed to non-fully developed. This study first defines the resolution of SAR images and equivalent number of scatters within the resolution cell, outlines the progress of research on speckle models for high resolution SAR images, introduces representative SAR speckle suppression methods in recent years, presents some future research trends, and therefore provides some reference for future research on enhancing the quality of high-resolution SAR images.
关键词(KeyWords):
合成孔径雷达图像;高分辨率;相干斑;相干斑抑制
synthetic aperture radar images;high resolution;speckle;speckle suppression
基金项目(Foundation): 国家自然科学基金面上项目(61871335);国家自然科学基金青年科学基金项目(61801247);; 南通市民生科技计划重点项目(MS12022005)
作者(Author):
许致火,李恒超
XU Zhihuo,LI Hengchao
参考文献(References):
- [1]王樱洁,王宇,禹卫东,等. See-Earth:高频时序多维地球环境监测SAR星座[J].雷达学报,2021, 10(6):842-864.WANG Y J, WANG R, YU W D, et al. See-earth:SAR constellation with dense time-series for multi-dimensional environmental monitoring of the earth[J]. Journal of Radars,2021, 10(6):842-864.(in Chinese)
- [2] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1):6-43.
- [3] SUN J L, YU W D, DENG Y K. The SAR payload design and performance for the GF-3 mission[J]. Sensors(Basel,Switzerland), 2017, 17(10):2419.
- [4] DENG Y K, WANG R. Exploration of advanced bistatic SAR experiments[J]. Journal of Radars, 2014(1):1-9.
- [5] XU Z H, ZHANG H C, WANG Y X, et al. Dynamic detection of offshore wind turbines by spatial machine learning from spaceborne synthetic aperture radar imagery[J].Journal of King Saud University-Computer and Information Sciences, 2022, 34(5):1674-1686.
- [6] XU Z H, WANG Y X. Radar satellite image time series analysis for high-resolution mapping of man-made forest change in Chongming eco-island[J]. Remote Sensing,2020, 12(20):3438.
- [7] ARGENTI F, LAPINI A, BIANCHI T, et al. A tutorial on speckle reduction in synthetic aperture radar images[J].IEEE Geoscience and Remote Sensing Magazine, 2013, 1(3):6-35.
- [8] GOODMAN J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11):1145.
- [9] OLIVER C, QUEGAN S. Understanding synthetic aperture images[M]. Norwood, MA:Artech House, 1998.
- [10] di MARTINO G, IODICE A, RICCIO D, et al. Equivalent number of scatterers for SAR speckle modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(5):2555-2564.
- [11] XU Z H. Wavelength-resolution SAR speckle model[J].IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
- [12] XU Z H, LI H C, SHI Q, et al. Effect analysis and spectral weighting optimization of sidelobe reduction on SAR image understanding[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019,12(9):3434-3444.
- [13] BARALDI A, PARMIGGIANI F. A refined gamma MAP SAR speckle filter with improved geometrical adaptivity[J].IEEE Transactions on Geoscience and Remote Sensing,1995, 33(5):1245-1257.
- [14] KRYLOV V A, MOSER G, SERPICO S B, et al. Enhanced dictionary-based SAR amplitude distribution estimation and its validation with very high-resolution data[J].IEEE Geoscience and Remote Sensing Letters, 2011, 8(1):148-152.
- [15] ARGENTI F, BIANCHI T, LAPINI A, et al. Fast MAP despeckling based on Laplacian-Gaussian modeling of wavelet coefficients[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1):13-17.
- [16] XU B, CUI Y, LI Z H, et al. Patch ordering-based SAR image despeckling via transform-domain filtering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1682-1695.
- [17] AMAO-OLIVA J, TORRES-ROMáN D, YANEZ-VARGAS I, et al. The beltrami SAR framework for multichannel despeckling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019,12(8):2989-3003.
- [18] REN Y X, YANG J, ZHAO L L, et al. SIRV-based high-resolution PolSAR image speckle suppression via dual-domain filtering[J]. IEEE Trans actions on Geoscience and Remote Sensing, 2019, 57(8):5923-5938.
- [19] DELEDALLE C A, DENIS L, POGGI G, et al. Exploiting patch similarity for SAR image processing:the nonlocal paradigm[J]. IEEE Signal Processing Magazine, 2014, 31(4):69-78.
- [20] DELEDALLE C A, DENIS L, TUPIN F. Iterative weighted maximum likelihood denoising with probabilistic patchbased weights[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2009,18(12):2661-2672.
- [21] PARRILLI S, PODERICO M, ANGELINO C V, et al. A nonlocal SAR image denoising algo rithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):606-616.
- [22] COZZOLINO D, PARRILLI S, SCARPA G, et al. Fast adaptive nonlocal SAR despeckling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2):524-528.
- [23] ARANDA-BOJORGES G, PONOMARYOV V, REYESREYES R, et al. Clustering-based 3-D-MAP despeckling of SAR images using sparse wavelet representation[J].IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
- [24]杨学志,叶铭,周芳,等.采用混合特征相似性的极化SAR图像降噪算法[J].电子学报,2016, 44(11):2583-2591.YANG X Z, YE M, ZHOU F, et al. Speckle reduction for pol SAR images using hybrid features similarity[J]. Acta Electronica Sinica, 2016, 44(11):2583-2591.(in Chinese)
- [25] YAN T H, YANG W, YANG X L, et al. Polarimetric SAR despeckling by integrating stochas tic sampling and contextual patch dissimilarity exploration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6):2738-2753.
- [26]行晓黎,陈启浩,徐乔,等.顾及目标异质性的极化SAR图像非局部均值滤波[J].遥感学报,2017, 21(3):434-441.XING X L, CHEN Q H, XU Q, et al. Nonlocal means filtering for polarimetric SAR images based on heterogeneity[J]. Journal of Remote Sensing, 2017, 21(3):434-441.(in Chinese)
- [27] XU Z H, DENG Y K, WANG R, et al. Filtering of SAR images using non-local PCA[J]. Remote Sensing Letters,2016, 7(1):41-50.
- [28] NIE X L, HUANG X Y, FENG W S. A new nonlocal TVbased variational model for SAR image despeckling based on the G0distribution[J]. Digital Signal Processing, 2017,68:44-56.
- [29] LIU F, WU J, LI L L, et al. A hybrid method of SAR speckle reduction based on geometric-structural block and adaptive neighborhood[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):730-748.
- [30] MA X S, WU P H, SHEN H F. Multifrequency polarimetric SAR image despeckling by iterative nonlocal means based on a space-frequency information joint covariance matrix[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(1):274-284.
- [31] LI H C, HONG W, WU Y R, et al. Bayesian wavelet shrinkage with heterogeneity-adap tive threshold for SAR image despeckling based on generalized gamma distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4):2388-2402.
- [32]史宝丽,周亚美,庞志峰.各向异性全变分图像去噪算法[J].南通大学学报(自然科学版),2019, 18(4):24-33.SHI B L, ZHOU Y M, PANG Z F. Image denoising via anisotropic total-variation-based method[J]. Journal of Nantong University(Natural Science Edition), 2019, 18(4):24-33.(in Chinese)
- [33] XU Z H, DENG Y K, WANG R. Insights into prior learning for despeckling SAR images[J]. IET Radar, Sonar&Navigation, 2016, 10(9):1611-1618.
- [34] LIU C, LI H C, FU K, et al. Bayesian estimation of generalized Gamma mixture model based on variational EM algorithm[J]. Pattern Recognition, 2019, 87:269-284.
- [35] MOSER G, ZERUBIA J, SERPICO S B. Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1):188-200.
- [36] XU Z H, SHI Q, CHEN Y J, et al. Non-stationary speckle reduction in high resolution SAR images[J]. Digital Signal Processing, 2018, 73:72-82.
- [37] LU Y X, GAO Q W, SUN D, et al. Directionlet-based method using the Gaussian mixture prior to SAR image despeckling[J]. International Journal of Remote Sensing,2014, 35(3):1143-1161.
- [38]何碧容,蔡倩,孔莹莹,等.采用GSM模型进行稀疏表示的SAR图像降斑算法[J].信号处理,2017, 33(11):1457-1467.HE B R, CAI Q, KONG Y Y, et al. SAR despeckling algorithm based on sparse structure and Gaussian scale mixture model[J]. Journal of Signal Processing, 2017, 33(11):1457-1467.(in Chinese)
- [39] FENG W S, LEI H, GAO Y. Speckle reduction via higher order total variation approach[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2014, 23(4):1831-1843.
- [40] MA X S, SHEN H F, ZHANG L P, et al. Adaptive anisotropic diffusion method for polarimetric SAR speckle filtering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3):1041-1050.
- [41] XU B, CUI Y, ZUO B, et al. Polarimetric SAR image filtering based on patch ordering and si multaneous sparse coding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7):4079-4093.
- [42] LIU S Q, LIU M, LI P F, et al. SAR image denoising via sparse representation in shearlet domain based on continuous cycle spinning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2985-2992.
- [43]刘柏森,张晔.经验模态分解和稀疏表示的SAR图像去噪方法[J].哈尔滨工程大学学报,2016, 37(9):1297-1301.LIU B S, ZHANG Y. SAR image de-noising based on empirical mode decomposition and sparse representation[J].Journal of Harbin Engineering Uni versity, 2016, 37(9):1297-1301.(in Chinese)
- [44]程凡强,朱永贵.去噪先验驱动的深度神经网络图像超分[J].南通大学学报(自然科学版),2021, 20(3):67-74.CHENG F Q, ZHU Y G. Deep neural network for image super resolution driven by prior denoising[J]. Journal of Nantong University(Natural Science Edition), 2021, 20(3):67-74.(in Chinese)
- [45]申仕煜,叶晓东,王昊,等.基于多尺度交互结构卷积神经网络的SAR图像相干斑抑制方法[J].系统工程与电子技术,2021, 43(12):3526-3532.SHEN S Y, YE X D, WANG H, et al. SAR image speckle suppression method based on Muti-scale interactive structure convolutional neural network[J]. Systems Engineering and Electronics, 2021, 43(12):3526-3532.(in Chinese)
- [46] VITALE S, FERRAIOLI G, PASCAZIO V. Analysis on the building of training dataset for deep learning SAR despeckling[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
- [47] WANG P Y, ZHANG H, PATEL V M. SAR image despeckling using a convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(12):1763-1767.
- [48] MOLINI A B, VALSESIA D, FRACAS TORO G, et al.Speckle2Void:deep self-supervised SAR despeckling with blind-spot convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-17.
- [49] LIU S Q, LIU T, GAO L L, et al. Convolutional neural network and guided filtering for SAR image denoising[J].Remote Sensing, 2019, 11(6):702.
- [50] WANG H, DING Z D, LI X Y, et al. Convolutional neural network with a learnable spatial acti vation function for SAR image despeckling and forest image analysis[J]. Remote Sensing, 2021, 13(17):3444.
- [51] FRACASTORO G, MAGLI E, POGGI G, et al. Deep learning methods for synthetic aperture radar image despeckling:an overview of trends and perspectives[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(2):29-51.
- [52] XIONG K, ZHAO G H, WANG Y B, et al. SAR imaging and despeckling based on sparse, low-rank, and deep CNN priors[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
- [53] LIU S Q, LEI Y, ZHANG L Y, et al. MRDDANet:a multiscale residual dense dual attention network for SAR image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-13.
- [54] TAN S, ZHANG X, WANG H, et al. A CNN-based selfsupervised synthetic aperture radar image denoising approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15.
- [55] TUCKER D, POTTER L C. Polarimetric SAR despeckling with convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-12.
文章评论(Comment):
|
||||||||||||||||||
|