南通大学学报(自然科学版)

2023, v.22;No.86(03) 1-16

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

面向特定辐射源识别的小样本学习方法综述
Survey of few-shot learning methods for specific emitter identification

桂冠,陶梦圆,王诚,付雪,王禹
GUI Guan,TAO Mengyuan,WANG Cheng,FU Xue,WANG Yu

摘要(Abstract):

随着第五代移动通信、物联网等技术的普及,辐射源数量与类型都呈现井喷式增长,这导致基于统计特征与机器学习的传统特定辐射源识别技术的识别性能难以达到实际应用水平。近年来,深度学习在计算机视觉、自然语言处理等领域表现出的高超性能启发了大量研究者将深度学习用于特定辐射源识别问题,并且取得了丰硕的研究成果,验证了基于深度学习的特定辐射源识别方法的有效性。数据是深度学习的三大支柱之一,这意味着基于深度学习的特定辐射源识别方法在训练阶段通常也需要海量、高质量电磁信号样本,但是在复杂多变的电磁环境中获取海量、高质量的电磁信号样本,并对其进行标注是十分困难并且成本高昂的。为此,部分研究者将目光聚焦在小样本特定辐射源识别问题上。为了揭示面向特定辐射源识别的小样本学习方法现有水平,推动小样本场景下的特定辐射源识别方法的研究与发展,文章系统地调研并综述了近年来国内外面向特定辐射源识别的小样本学习方法。首先,将已有的小样本特定辐射源识别方法根据有无辅助电磁信号样本对其进行分类,并进行问题描述;然后,分别综述已有的研究工作;最后,进行相关实验仿真并分析了存在的问题与未来的方向。
With the proliferation of technologies such as 5th-generation mobile communication and the Internet of things, there has been an explosive growth in the number and types of emitters. Consequently, the recognition performance of traditional specific emitter identification(SEI) technology, which relies on statistical features and machine learning, is challenging to achieve practical application levels. Inspired by the remarkable performance of deep learning in fields like computer vision and natural language processing, numerous researchers have applied deep learning to SEI, yielding fruitful research outcomes that substantiate the effectiveness of deep learning-based SEI methods. Data is one of the fundamental pillars of deep learning, implying that deep learning-based SEI methods typically require extensive and high-quality electromagnetic signal samples for the training process. However, obtaining and accurately labeling massive and high-quality electromagnetic signal samples in complex and dynamic electromagnetic environments is difficult and expensive. Consequently, some researchers have focused on the problem of few-shot learning for specific emitter identification. To elucidate the current status of few-shot learning-based SEI methods and facilitate research and development in the context of few-shot scenarios, this paper comprehensively investigates and summarizes recent few-shot learning-based SEI methods conducted both domestically and internationally. Firstly, the existing few-shot learning-based SEI methods are classified based on whether auxiliary electromagnetic signal samples are utilized in the training process, accompanied by a description of the corresponding problem formulations. Subsequently, a summary of the existing research work is presented, followed by relevant experimental simulations and an analysis of the existing challenges and future directions.

关键词(KeyWords): 特定辐射源识别;深度学习;小样本学习;电磁信号
specific emitter identification;deep learning;few-shot learning;electromagnetic signal

Abstract:

Keywords:

基金项目(Foundation): 科技创新2030——“新一代人工智能”重大项目(2021ZD0113003)

作者(Author): 桂冠,陶梦圆,王诚,付雪,王禹
GUI Guan,TAO Mengyuan,WANG Cheng,FU Xue,WANG Yu

参考文献(References):

文章评论(Comment):

序号(No.) 时间(Time) 反馈人(User) 邮箱(Email) 标题(Title) 内容(Content)
反馈人(User) 邮箱地址(Email)
反馈标题(Title)
反馈内容(Content)
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享